On non-ergodic convergence rate of the operator splitting method for a class of variational inequalities

被引:2
|
作者
Kou, X. P. [1 ]
Li, S. J. [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational inequalities; Operator splitting method; Convergence rate; PROXIMAL POINT ALGORITHM;
D O I
10.1007/s11590-015-0986-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we investigate an operator splitting method for solving variational inequalities with partially unknown mappings. According to the global convergence of the operator splitting method, which has been established by Han et al. (Numer Math 111:207-237, 2008), we get the O(1/t) convergence rate of the operator splitting method in non-ergodic sense.
引用
收藏
页码:71 / 80
页数:10
相关论文
共 50 条
  • [1] On non-ergodic convergence rate of the operator splitting method for a class of variational inequalities
    X. P. Kou
    S. J. Li
    Optimization Letters, 2017, 11 : 71 - 80
  • [2] On a Class of Non-Ergodic Lotka–Volterra Operator
    C. H. Pah
    A. Rosli
    Lobachevskii Journal of Mathematics, 2022, 43 : 2591 - 2598
  • [3] On a Class of Non-Ergodic Lotka-Volterra Operator
    Pah, C. H.
    Rosli, A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (09) : 2591 - 2598
  • [4] GLOBAL CONVERGENCE OF AN INEXACT OPERATOR SPLITTING METHOD FOR MONOTONE VARIATIONAL INEQUALITIES
    Ge, Zhili
    Qian, Gang
    Han, Deren
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (04) : 1013 - 1026
  • [5] On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers
    Bingsheng He
    Xiaoming Yuan
    Numerische Mathematik, 2015, 130 : 567 - 577
  • [6] On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers
    He, Bingsheng
    Yuan, Xiaoming
    NUMERISCHE MATHEMATIK, 2015, 130 (03) : 567 - 577
  • [7] Convergence Rate Analysis of a Class of Uncertain Variational Inequalities
    Li, Cunlin
    Zhao, Teng
    Yee, Hooi Min
    IEEE ACCESS, 2023, 11 : 57772 - 57782
  • [8] CONVERGENCE OF NON-ERGODIC DYNAMICAL-SYSTEMS
    KALLENBERG, O
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 53 (03): : 329 - 351
  • [9] An operator splitting method for variational inequalities with partially unknown mappings
    Han, Deren
    Xu, Wei
    Yang, Hai
    NUMERISCHE MATHEMATIK, 2008, 111 (02) : 207 - 237
  • [10] A modified inexact operator splitting method for monotone variational inequalities
    Min Li
    Abdellah Bnouhachem
    Journal of Global Optimization, 2008, 41 : 417 - 426