Risk Comparison of Improved Estimators in a Linear Regression Model with Multivariate t Errors under Balanced Loss Function

被引:0
|
作者
Hu, Guikai [1 ,2 ]
Li, Qingguo [1 ]
Yu, Shenghua [3 ]
机构
[1] Hunan Univ, Sch Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] E China Inst Technol, Sch Sci, Nanchang 330013, Peoples R China
[3] Hunan Univ, Sch Econ & Trade, Changsha 410079, Hunan, Peoples R China
关键词
STEIN-RULE ESTIMATOR; RELEVANT REGRESSORS;
D O I
10.1155/2014/129205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under a balanced loss function, we derive the explicit formulae of the risk of the Stein-rule (SR) estimator, the positive-part Stein-rule (PSR) estimator, the feasible minimum mean squared error (FMMSE) estimator, and the adjusted feasible minimum mean squared error (AFMMSE) estimator in a linear regression model with multivariate t errors. The results show that the PSR estimator dominates the SR estimator under the balanced loss and multivariate t errors. Also, our numerical results show that these estimators dominate the ordinary least squares (OLS) estimator when the weight of precision of estimation is larger than about half, and vice versa. Furthermore, the AFMMSE estimator dominates the PSR estimator in certain occasions.
引用
收藏
页数:7
相关论文
共 50 条