The log-power-normal distribution with application to air pollution

被引:16
|
作者
Martinez-Florez, Guillermo [1 ]
Bolfarine, Heleno [2 ]
Gomez, Hector W. [3 ]
机构
[1] Univ Cordoba, Fac Ciencias, Dept Matemat & Estadist, Cordoba, Colombia
[2] Univ Sao Paulo, Dept Estat, IME, Sao Paulo, Brazil
[3] Univ Antofagasta, Fac Ciencias Basicas, Dept Matemat, Antofagasta, Chile
关键词
Ahrens' law; moment estimators; maximum likelihood estimators; Fisher information matrix; SKEW-NORMAL DISTRIBUTION; INFERENCE;
D O I
10.1002/env.2256
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this article, we study an extension of the power-normal distribution to the case of the more flexible log-power-normal distribution. We find the density function and study some properties of the new distribution, deriving a general expression for its moments. Parameter estimation is implemented by using the moments and the maximum likelihood approaches. We obtain the Fisher information matrix for the new model, which is shown to be nonsingular in the vicinity of symmetry. Results of an application to air contamination data indicate good performance of the proposed model, validating a modification of Ahrens' law. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:44 / 56
页数:13
相关论文
共 50 条
  • [1] The log-power-normal distribution is the exponentiated lognormal distribution
    Nadarajah, S.
    Afuecheta, E.
    Chan, S.
    [J]. ENVIRONMETRICS, 2014, 25 (05) : 361 - 362
  • [2] Bias Correction Method for Log-Power-Normal Distribution
    Tsai, Tzong-Ru
    Lio, Yuhlong
    Fan, Ya-Yen
    Cheng, Che-Pin
    [J]. MATHEMATICS, 2022, 10 (06)
  • [3] The Slash Power Normal Distribution with Application to Pollution Data
    Chen, Mingming
    Ma, Jianghong
    Leung, Yee
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [4] The Slash Power Normal Distribution with Application to Pollution Data
    Chen, Mingming
    Ma, Jianghong
    Leung, Yee
    [J]. Mathematical Problems in Engineering, 2022, 2022
  • [5] A Skewed Sinh-Normal Distribution and Its Properties and Application to Air Pollution
    Leiva, Victor
    Vilca, Filidor
    Balakrishnan, N.
    Sanhueza, Antonio
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (03) : 426 - 443
  • [6] An Alternative to the Log-Skew-Normal Distribution: Properties, Inference, and an Application to Air Pollutant Concentrations
    Arrue, Jaime
    Arellano-Valle, Reinaldo Boris
    Venegas, Osvaldo
    Bolfarine, Heleno
    Gomez, Hector W.
    [J]. MATHEMATICS, 2022, 10 (22)
  • [7] ON THE APPLICATION OF THE LOG-NORMAL DISTRIBUTION IN THE STRUCTURAL SAFETY ANALYSIS
    胡聿賢
    [J]. Science China Mathematics, 1960, (03) : 442 - 458
  • [8] ON THE APPLICATION OF THE LOG-NORMAL DISTRIBUTION IN THE STRUCTURAL SAFETY ANALYSIS
    胡聿賢
    [J]. Science in China,SerA., 1960, Ser.A.1960 (03) : 442 - 458
  • [9] Modelling air pollution data by the skew-normal distribution
    Silvia Bartoletti
    Nicola Loperfido
    [J]. Stochastic Environmental Research and Risk Assessment, 2010, 24 : 513 - 517
  • [10] Modelling air pollution data by the skew-normal distribution
    Bartoletti, Silvia
    Loperfido, Nicola
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2010, 24 (04) : 513 - 517