Jet extraction modes of inertial electrostatic confinement devices for electric propulsion applications

被引:9
|
作者
Syring, Constanze [1 ]
Herdrich, Georg [1 ]
机构
[1] Univ Stuttgart, Inst Space Syst, Pfaffenwaldring 29, Stuttgart, Germany
关键词
Inertial electrostatic confinement; Plasma confinement and extraction; Plasma composition; Jet mode; High speed camera; FUSION;
D O I
10.1016/j.vacuum.2016.10.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Inertial Electrostatic Confinement (IEC) method is a plasma confinement principle with different operation modes. The work presented investigates the jet mode, which occurs with a jet extraction relevant for space propulsion applications. Two different jet modes were observed, the tight jet mode and the spray jet mode. Depending on propellant, discharge pressure and power these modes occur at different operation conditions and characteristics. Emission spectroscopic investigations show a different plasma species composition of confinement and extraction plasma and the transition between those modes has been examined with a high-speed camera. Finally, the applicability of IEC plasma sources for space propulsion systems is discussed with respect to the experimental results. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 33 条
  • [1] Jet extraction and characterization in an inertial electrostatic confinement device
    Chan, Yung-An
    Herdrich, Georg
    VACUUM, 2019, 167 : 482 - 489
  • [2] Reassessing Jet Mode of Inertial Electrostatic Confinement Thruster for Space Propulsion Application
    Puri, Rohan
    Miley, George H.
    Rovey, Joshua L.
    Section, Myles Y. Gong
    Ziehm, Erik P.
    AIAA SCITECH 2024 FORUM, 2024,
  • [3] NON-ELECTRIC APPLICATIONS OF THE INERTIAL ELECTROSTATIC CONFINEMENT FUSION CONCEPT
    Kulcinski, Gerald L.
    Santarius, John F.
    FUSION SCIENCE AND TECHNOLOGY, 2013, 64 (02) : 365 - 372
  • [4] Deuterium anions in inertial electrostatic confinement devices
    Boris, D. R.
    Alderson, E.
    Becerra, G.
    Donovan, D. C.
    Egle, B.
    Emmert, G. A.
    Garrison, L.
    Kulcinski, G. L.
    Santarius, J. F.
    Schuff, C.
    Zenobia, S. J.
    PHYSICAL REVIEW E, 2009, 80 (03):
  • [5] Evidence for surface fusion in inertial electrostatic confinement devices
    Bowden-Reid, Richard
    Khachan, Joe
    Wulfkuehler, Jan-Philipp
    Tajmar, Martin
    PHYSICS OF PLASMAS, 2018, 25 (11)
  • [6] Engineering issues of gridded inertial electrostatic confinement devices
    Chacon, L
    DeMora, JM
    Miley, GH
    17TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, VOLS 1 AND 2, 1998, : 737 - 740
  • [7] Performance of PolywellTM inertial-electrostatic confinement for applications
    Santarius, J.F.
    Simmons, K.H.
    IEEE International Conference on Plasma Science,
  • [8] Basics of Inertial Electrostatic Confinement Fusion and Its Applications
    Mohanty, S. R.
    Buzarbaruah, N.
    Bhattacharjee, D.
    Jigdung, D.
    PROCEEDINGS OF THE 14TH ASIA-PACIFIC PHYSICS CONFERENCE, 2021, 2319
  • [9] Pulse operation mode of inertial electrostatic plasma confinement devices
    Prokuratov, I. A.
    Mikhailov, Yu. V.
    Andreev, D. A.
    Golikov, A. V.
    Lemeshko, B. D.
    Maslennikov, S. P.
    ANNALS OF NUCLEAR ENERGY, 2024, 203
  • [10] Pulse operation mode of inertial electrostatic plasma confinement devices
    Prokuratov, I. A.
    Mikhailov, Yu. V.
    Andreev, D. A.
    Golikov, A. V.
    Lemeshko, B. D.
    Maslennikov, S. P.
    ANNALS OF NUCLEAR ENERGY, 2024, 203