Using machine learning to predict risk of opioid overdose in Medicare

被引:0
|
作者
Lo-Ciganic, Weihsuan Jenny [1 ]
Huang, James L. [1 ]
Zhang, Hao H. [2 ]
Weiss, Jeremy C. [3 ]
Wu, Yonghui [1 ]
Kwoh, Chian K. [2 ]
Donohue, Julie M. [4 ]
Cochran, Jerry [5 ]
Gordon, Adam J. [5 ,6 ]
Malone, Daniel C. [2 ]
Kuza, Courtney C. [4 ]
Gellad, Walid F. [4 ,7 ]
机构
[1] Univ Florida, Gainesville, FL USA
[2] Univ Arizona, Tucson, AZ USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[4] Univ Pittsburgh, Pittsburgh, PA USA
[5] Univ Utah, Salt Lake City, UT USA
[6] Salt Lake City Hlth Care Syst, Salt Lake City, UT USA
[7] VA Pittsburgh Healthcare Syst, Pittsburgh, PA USA
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
467
引用
收藏
页码:230 / 230
页数:1
相关论文
共 50 条
  • [1] Evaluation of Machine-Learning Algorithms for Predicting Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions
    Lo-Ciganic, Wei-Hsuan
    Huang, James L.
    Zhang, Hao H.
    Weiss, Jeremy C.
    Wu, Yonghui
    Kwoh, C. Kent
    Donohue, Julie M.
    Cochran, Gerald
    Gordon, Adam J.
    Malone, Daniel C.
    Kuza, Courtney C.
    Gellad, Walid F.
    JAMA NETWORK OPEN, 2019, 2 (03) : e190968
  • [2] Finding a needle in the haystack: Using machine-learning to predict overdose in opioid users
    Crosier, Benjamin Sage
    Borodovsky, Jacob
    Mateu-Gelabert, Pedro
    Guarino, Honoria
    DRUG AND ALCOHOL DEPENDENCE, 2017, 171 : E49 - E49
  • [3] A Machine Learning Approach to Predict Length of Stay for Opioid Overdose Admitted Patients
    Wu, Jiawei
    Annapureddy, Priyanka
    Farahany, Zach
    Madiraju, Praveen
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 4790 - 4797
  • [4] A Machine Learning Approach to Predict Length of Stay for Opioid Overdose Admitted Patients
    Wu, Jiawei
    Annapureddy, Priyanka
    Farahany, Zach
    Madiraju, Praveen
    2021 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH (ICDH 2021), 2021, : 223 - 225
  • [5] Using machine learning to predict risk of incident opioid use disorder among fee-for-service Medicare beneficiaries: A prognostic study
    Lo-Ciganic, Wei-Hsuan
    Huang, James L.
    Zhang, Hao H.
    Weiss, Jeremy C.
    Kwoh, C. Kent
    Donohue, Julie M.
    Gordon, Adam J.
    Cochran, Gerald
    Malone, Daniel C.
    Kuza, Courtney C.
    Gellad, Walid F.
    PLOS ONE, 2020, 15 (07):
  • [6] A machine learning framework to predict the risk of opioid use disorder
    Hasan, Md Mahmudul
    Young, Gary J.
    Patel, Mehul Rakeshkumar
    Modestino, Alicia Sasser
    Sanchez, Leon D.
    Noor-E-Alam, Md.
    MACHINE LEARNING WITH APPLICATIONS, 2021, 6
  • [7] Machine learning for phenotyping opioid overdose events
    Badger, Jonathan
    LaRose, Eric
    Mayer, John
    Bashiri, Fereshteh
    Page, David
    Peissig, Peggy
    JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 94
  • [8] Utilizing Machine Learning for Early Intervention and Risk Management in the Opioid Overdose Crisis
    Tai, Andy Man Yeung
    Kazemi, Alireza
    Kim, Jane J.
    Schmeckenbecher, Jim
    Kitchin, Vanessa
    Suen, Janet
    Moro, Ryan
    Krausz, R. Michael
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2025, 17 (01):
  • [9] Evaluation of machine-learning algorithms for predicting opioid overdose risk among Medicare beneficiaries with opioid prescriptions (vol 2, e190968, 2019)
    Lo-Ciganic, W-H
    Huang, J. L.
    Zhang, H. H.
    JAMA NETWORK OPEN, 2019, 2 (07)
  • [10] USING MACHINE LEARNING TO PREDICT OPIOID OVERDOSES AMONG PRESCRIPTION OPIOID USERS
    Li, X.
    Chaovalitwongse, W. A.
    Curran, G.
    Tilford, J. M.
    Felix, H.
    Martin, B. C.
    VALUE IN HEALTH, 2018, 21 : S245 - S245