A computational framework for quantifying and analyzing system flexibility

被引:10
|
作者
Pulsipher, Joshua L. [1 ]
Rios, Daniel [1 ]
Zavala, Victor M. [1 ]
机构
[1] Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA
关键词
Flexibility; Uncertainty; Complex systems; OPERATIONAL FLEXIBILITY; PROCESS DESIGN; OPTIMIZATION; FORMULATION; UNCERTAINTY; INDEX; STATE;
D O I
10.1016/j.compchemeng.2019.04.024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a computational framework for analyzing and quantifying system flexibility. Our framework incorporates new features that include: general uncertainty characterizations that are constructed using composition of sets, procedures for computing well-centered nominal points, and a procedure for identifying and ranking flexibility-limiting constraints and critical parameter values. These capabilities allow us to analyze the flexibility of complex systems such as distribution networks. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:342 / 355
页数:14
相关论文
共 50 条
  • [1] A framework for analyzing flexibility of generic objects
    Fitzgerald, Guy
    Barad, Miryam
    Papazafeiropoulou, Anastasia
    Alaa, Ghada
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2009, 122 (01) : 329 - 339
  • [2] Development of Framework for Analyzing Flexibility in Supply Chain
    Singh, R. K.
    Sharma, P. B.
    [J]. ORGANISATIONAL FLEXIBILITY AND COMPETITIVENESS, 2014, : 273 - 283
  • [3] A theoretical framework for analyzing the dimensions of manufacturing flexibility
    Koste, LL
    Malhotra, MK
    [J]. JOURNAL OF OPERATIONS MANAGEMENT, 1999, 18 (01) : 75 - 93
  • [4] Quantifying power system flexibility provision
    Heggarty, Thomas
    Bourmaud, Jean-Yves
    Girard, Robin
    Kariniotakis, Georges
    [J]. APPLIED ENERGY, 2020, 279
  • [5] A unifying computational framework for stability and flexibility of arousal
    Kosse, Christin
    Burdakov, Denis
    [J]. FRONTIERS IN SYSTEMS NEUROSCIENCE, 2014, 8
  • [6] A computational neuroscience framework for quantifying warning signals
    Penacchio, O.
    Halpin, C. G.
    Cuthill, I. C.
    Lovell, P. G.
    Wheelwright, M.
    Skelhorn, J.
    Rowe, C.
    Harris, J. M.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (01): : 103 - 116
  • [7] A Computational Framework for Analyzing Stochasticity in Gene Expression
    Sherman, Marc S.
    Cohen, Barak A.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (05)
  • [8] Quantifying uncertainty in parameter estimates of ultrasonic inspection system using Bayesian computational framework
    Ben Abdessalem, Anis
    Jenson, Frederic
    Calmon, Pierre
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 109 : 89 - 110
  • [9] A ROBUST COMPUTATIONAL FRAMEWORK FOR ANALYZING FRACTIONAL DYNAMICAL SYSTEMS
    Sayevand, Khosro
    Moradi, Valeyollah
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (10): : 3763 - 3783
  • [10] A computational framework for simulating and analyzing human and animal movement
    Delp, SL
    Loan, JP
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2000, 2 (05) : 46 - 55