Climate velocity and the future global redistribution of marine biodiversity

被引:162
|
作者
Molinos, Jorge Garcia [1 ,2 ]
Halpern, Benjamin S. [3 ,4 ,5 ]
Schoeman, David S. [6 ]
Brown, Christopher J. [7 ]
Kiessling, Wolfgang [8 ,9 ]
Moore, Pippa J. [10 ,11 ]
Pandolfi, John M. [12 ]
Poloczanska, Elvira S. [13 ]
Richardson, Anthony J. [13 ,14 ]
Burrows, Michael T. [1 ]
机构
[1] Scottish Assoc Marine Sci, Oban PA37 1QA, Argyll, Scotland
[2] Natl Inst Environm Studies, Ctr Environm Biol & Ecosyst Studies, Tsukuba, Ibaraki 3058506, Japan
[3] Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA
[4] Univ London Imperial Coll Sci Technol & Med, Ascot SL5 7PY, Berks, England
[5] NCEAS, Santa Barbara, CA 93101 USA
[6] Univ Sunshine Coast, Sch Sci & Engn, Maroochydore, Qld 4558, Australia
[7] Univ Queensland, Global Change Inst, Brisbane, Qld 4072, Australia
[8] Univ Erlangen Nurnberg, GeoZentrum Nordbayern, Palaoumwelt, D-91054 Erlangen, Germany
[9] Museum Naturkunde, D-10115 Berlin, Germany
[10] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3DA, Dyfed, Wales
[11] Edith Cowan Univ, Ctr Marine Ecosyst Res, Perth, WA 6027, Australia
[12] Univ Queensland, Sch Biol Sci, Australian Res Council Ctr Excellence Coral Reef, Brisbane, Qld 4072, Australia
[13] Ecosci Precinct, CSIRO Oceans & Atmosphere Flagship, Brisbane, Qld 4001, Australia
[14] Univ Queensland, Sch Math & Phys, Ctr Applicat Nat Resource Math CARM, St Lucia, Qld 4072, Australia
基金
日本学术振兴会; 澳大利亚研究理事会; 美国国家科学基金会;
关键词
RANGE SHIFTS; IMPACTS; DISTRIBUTIONS; SCENARIOS;
D O I
10.1038/NCLIMATE2769
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Anticipating the effect of climate change on biodiversity, in particular on changes in community composition, is crucial for adaptive ecosystem management(1) but remains a critical knowledge gap(2). Here, we use climate velocity trajectories(3), together with information on thermal tolerances and habitat preferences, to project changes in global patterns of marine species richness and community composition under IPCC Representative Concentration Pathways(4) (RCPs) 4.5 and 8.5. Our simple, intuitive approach emphasizes climate connectivity, and enables us to model over 12 times as many species as previous studies(5,6). We find that range expansions prevail over contractions for both RCPs up to 2100, producing a net local increase in richness globally, and temporal changes in composition, driven by the redistribution rather than the loss of diversity. Conversely, widespread invasions homogenize present-day communities across multiple regions. High extirpation rates are expected regionally (for example, Indo-Pacific), particularly under RCP8.5, leading to strong decreases in richness and the anticipated formation of no-analogue communities where invasions are common. The spatial congruence of these patterns with contemporary human impacts(7,8) highlights potential areas of future conservation concern. These results strongly suggest that the millennial stability of current global marine diversity patterns, against which conservation plans are assessed, will change rapidly over the course of the century in response to ocean warming.
引用
收藏
页码:83 / +
页数:8
相关论文
共 50 条
  • [1] Climate velocity and the future global redistribution of marine biodiversity
    Garciá Molinos J.
    Halpern B.S.
    Schoeman D.S.
    Brown C.J.
    Kiessling W.
    Moore P.J.
    Pandolfi J.M.
    Poloczanska E.S.
    Richardson A.J.
    Burrows M.T.
    [J]. Nature Climate Change, 2016, 6 (1) : 83 - 88
  • [2] Climate, Oxygen, and the Future of Marine Biodiversity
    Deutsch, Curtis
    Penn, Justin L.
    Lucey, Noelle
    [J]. ANNUAL REVIEW OF MARINE SCIENCE, 2024, 16 : 217 - 245
  • [3] Impact of global climate cooling on Ordovician marine biodiversity
    Daniel Eliahou Ontiveros
    Gregory Beaugrand
    Bertrand Lefebvre
    Chloe Markussen Marcilly
    Thomas Servais
    Alexandre Pohl
    [J]. Nature Communications, 14
  • [4] Climate impacts on global hot spots of marine biodiversity
    Ramirez, Francisco
    Afan, Isabel
    Davis, Lloyd S.
    Chiaradia, Andre
    [J]. SCIENCE ADVANCES, 2017, 3 (02):
  • [5] Impact of global climate cooling on Ordovician marine biodiversity
    Ontiveros, Daniel Eliahou
    Beaugrand, Gregory
    Lefebvre, Bertrand
    Marcilly, Chloe Markussen
    Servais, Thomas
    Pohl, Alexandre
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [6] Current and Future Patterns of Global Marine Mammal Biodiversity
    Kaschner, Kristin
    Tittensor, Derek P.
    Ready, Jonathan
    Gerrodette, Tim
    Worm, Boris
    [J]. PLOS ONE, 2011, 6 (05):
  • [7] Global predation pressure redistribution under future climate change
    Romero, Gustavo Q.
    Goncalves-Souza, Thiago
    Kratina, Pavel
    Marino, Nicholas A. C.
    Petry, William K.
    Sobral-Souza, Thadeu
    Roslin, Tomas
    [J]. NATURE CLIMATE CHANGE, 2018, 8 (12) : 1087 - +
  • [8] Global predation pressure redistribution under future climate change
    Gustavo Q. Romero
    Thiago Gonçalves-Souza
    Pavel Kratina
    Nicholas A. C. Marino
    William K. Petry
    Thadeu Sobral-Souza
    Tomas Roslin
    [J]. Nature Climate Change, 2018, 8 : 1087 - 1091
  • [9] Autonomous adaptation to climate-driven change in marine biodiversity in a global marine hotspot
    Pecl, Gretta T.
    Ogier, Emily
    Jennings, Sarah
    van Putten, Ingrid
    Crawford, Christine
    Fogarty, Hannah
    Frusher, Stewart
    Hobday, Alistair J.
    Keane, John
    Lee, Emma
    MacLeod, Catriona
    Mundy, Craig
    Stuart-Smith, Jemina
    Tracey, Sean
    [J]. AMBIO, 2019, 48 (12) : 1498 - 1515
  • [10] Autonomous adaptation to climate-driven change in marine biodiversity in a global marine hotspot
    Gretta T. Pecl
    Emily Ogier
    Sarah Jennings
    Ingrid van Putten
    Christine Crawford
    Hannah Fogarty
    Stewart Frusher
    Alistair J. Hobday
    John Keane
    Emma Lee
    Catriona MacLeod
    Craig Mundy
    Jemina Stuart-Smith
    Sean Tracey
    [J]. Ambio, 2019, 48 : 1498 - 1515