Unsupervised Spectral Mesh Segmentation Driven by Heterogeneous Graphs

被引:27
|
作者
Theologou, Panagiotis [1 ]
Pratikakis, Ioannis [1 ]
Theoharis, Theoharis [2 ,3 ]
机构
[1] Democritus Univ Thrace, Dept Elect & Comp Engn, Xanthi, Greece
[2] Norwegian Univ Sci & Technol, Trondheim, Norway
[3] Natl & Kapodistrian Univ Athens, Athens, Greece
关键词
Mesh processing; spectral analysis; 3D mesh segmentation; DECOMPOSITION;
D O I
10.1109/TPAMI.2016.2544311
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A fully automatic mesh segmentation scheme using heterogeneous graphs is presented. We introduce a spectral framework where local geometry affinities are coupled with surface patch affinities. A heterogeneous graph is constructed combining two distinct graphs: a weighted graph based on adjacency of patches of an initial over-segmentation, and the weighted dual mesh graph. The partitioning relies on processing each eigenvector of the heterogeneous graph Laplacian individually, taking into account the nodal set and nodal domain theory. Experiments on standard datasets show that the proposed unsupervised approach outperforms the state-of-the-art unsupervised methodologies and is comparable to the best supervised approaches.
引用
收藏
页码:397 / 410
页数:14
相关论文
共 50 条
  • [1] Mesh segmentation by combining mesh saliency with spectral clustering
    Jiao, Xue
    Wu, Tieru
    Qin, Xuzhou
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 329 : 134 - 146
  • [2] Spectral-based mesh segmentation
    Mejia D.
    Ruiz-Salguero O.
    Cadavid C.A.
    [J]. Ruiz-Salguero, Oscar (oruiz@eafit.edu.co), 1600, Springer-Verlag France (11): : 503 - 514
  • [3] A framework for unsupervised mesh based segmentation of moving objects
    Kriechbaum, Andreas
    Moerzinger, Roland
    Thallinger, Georg
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2010, 50 (01) : 7 - 28
  • [4] A framework for unsupervised mesh based segmentation of moving objects
    Andreas Kriechbaum
    Roland Mörzinger
    Georg Thallinger
    [J]. Multimedia Tools and Applications, 2010, 50 : 7 - 28
  • [5] Mesh segmentation driven by Gaussian curvature
    Yamauchi, H
    Gumhold, S
    Zayer, R
    Seidel, HP
    [J]. VISUAL COMPUTER, 2005, 21 (8-10): : 659 - 668
  • [6] Mesh segmentation driven by Gaussian curvature
    Hitoshi Yamauchi
    Stefan Gumhold
    Rhaleb Zayer
    Hans-Peter Seidel
    [J]. The Visual Computer, 2005, 21 : 659 - 668
  • [7] Approximate personalized propagation for unsupervised embedding in heterogeneous graphs
    Chen, Yibi
    Hu, Yikun
    Li, Keqin
    Yeo, Chai Kiat
    Li, Kenli
    [J]. INFORMATION SCIENCES, 2022, 600 : 287 - 300
  • [8] 3D Mesh Segmentation Based on Unsupervised Clustering
    Khattab, Dina
    Ebeid, Hala M.
    Hussein, Ashraf S.
    Tolba, Mohamed F.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2016, 2017, 533 : 598 - 607
  • [9] Combined morphological-spectral unsupervised image segmentation
    O'Callaghan, RJ
    Bull, DR
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (01) : 49 - 62
  • [10] Unsupervised Spectral Clustering for Segmentation of Dynamic PET Images
    Zbib, Hiba
    Mouysset, Sandrine
    Stute, Simon
    Girault, Jean-Marc
    Charara, Jamal
    Chalon, Sylvie
    Galineau, Laurent
    Buvat, Irene
    Tauber, Clovis
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (03) : 840 - 850