EFFECTS OF VORTEX TANGLE ANISOTROPY IN COUNTERFLOW SUPERFLUID TURBULENCE

被引:1
|
作者
Mongiovi, Maria Stella [1 ]
Restuccia, Liliana [2 ]
机构
[1] Univ Palermo, Dipartimento Innovaz Ind & Digitale, I-90128 Palermo, Italy
[2] Univ Messina, Dipartimento Sci Matemat & Informat Sci Fis & Sci, Viale F Stagno dAlcontres 31, I-98166 Messina, Italy
关键词
LIQUID-HELIUM-II; EXTENDED IRREVERSIBLE THERMODYNAMICS; THERMAL-CONDUCTIVITY; MUTUAL FRICTION; EQUATIONS;
D O I
10.1478/AAPP.97S1A16
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The physical picture of counterflow superfluid turbulence is a disordered tangle of quantized vortex lines. This tangle is produced and sustained by a heat flux crossing the system. When such a heat flux is high enough, vortices appear and evolve. In the former literature the vortex tangle is described by using only a scalar quantity, dependent on the imposed heat flux, the average vortex line density per unit volume. Recent experiments and numerical simulations show that the tangle is not homogeneous nor isotropic, especially in non steady states, or in the simultaneous presence of counterflow and rotation. In general situations the vortex tangle must be considered as a dynamical quantity, for which an evolution equation must be given. Here, we deepen a thermodynamical model of inhomogeneous counterflow superfluid turbulence worked out in a previous paper (Z. Angew. Math. Phys. (2018), 69: 2), considering the particular case of counterflow (presence of heat flow but absence of mass flow). The model chooses as fundamental fields the energy density, the heat flux, and a complete vorticity tensor, including its scalar part, its symmetric trace-less part and its antisymmetric part. Restriction for constitutive relations are obtained using Liu's method of Lagrange multipliers. Assuming that the dynamical evolution of the vorticity tensor is much faster than that of the heat flux, we derive an evolution equation for the heat flux of Guyer-Krumhansl type. This leads to a new physical interpretation of some terms responsible for the attenuation of second sound.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Experiments in superfluid turbulence with vortex tangle
    Yamaguchi, M
    PHYSICA B, 1999, 269 (3-4): : 254 - 268
  • [2] Diffusion of inhomogeneous vortex tangle and decay of superfluid turbulence
    Nemirovskii, Sergey K.
    PHYSICAL REVIEW B, 2010, 81 (06)
  • [3] STOCHASTIC-THEORY OF VORTEX TANGLE IN SUPERFLUID TURBULENCE
    YAMADA, K
    KASHIWAMURA, S
    MIYAKE, K
    PHYSICA B, 1989, 154 (03): : 318 - 326
  • [4] Dynamics of the vortex line density in superfluid counterflow turbulence
    Khomenko, D.
    L'vov, V. S.
    Pomyalov, A.
    Procaccia, I.
    PHYSICAL REVIEW B, 2018, 97 (01)
  • [5] Structure of a quantum vortex tangle in 4He counterflow turbulence
    Kondaurova, Luiza
    L'vov, Victor
    Pomyalov, Anna
    Procaccia, Itamar
    PHYSICAL REVIEW B, 2014, 89 (01)
  • [6] ON THE VALIDITY OF VORTEX-TANGLE SIMULATIONS OF HOMOGENEOUS SUPERFLUID TURBULENCE
    SCHWARZ, KW
    JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 87 (01) : 237 - 240
  • [7] Transition to Quantum Turbulence and Streamwise Inhomogeneity of Vortex Tangle in Thermal Counterflow
    Varga, E.
    Babuin, S.
    L'vov, V. S.
    Pomyalov, A.
    Skrbek, L.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2017, 187 (5-6) : 531 - 537
  • [8] Transition to Quantum Turbulence and Streamwise Inhomogeneity of Vortex Tangle in Thermal Counterflow
    E. Varga
    S. Babuin
    V. S. L’vov
    A. Pomyalov
    L. Skrbek
    Journal of Low Temperature Physics, 2017, 187 : 531 - 537
  • [9] Description and evolution of anisotropy in superfluid vortex tangles with counterflow and rotation
    Jou, D.
    Mongiovi, M. S.
    PHYSICAL REVIEW B, 2006, 74 (05)
  • [10] Strong anisotropy of superfluid 4He counterflow turbulence
    Biferale, L.
    Khomenko, D.
    L'vov, V. S.
    Pomyalov, A.
    Procaccia, I
    Sahoo, G.
    PHYSICAL REVIEW B, 2019, 100 (13)