Packing rectangles in a strip

被引:5
|
作者
Coffman, EG [1 ]
Downey, PJ
Winkler, P
机构
[1] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[2] Univ Arizona, Dept Comp Sci, Tucson, AZ 85721 USA
[3] Lucent Technol, Bell Labs, Murray Hill, NJ 07974 USA
关键词
D O I
10.1007/s00236-002-0089-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rectangles with dimensions independently chosen from a uniform distribution on [0,1] are packed on-line into a unit-width strip under a constraint like that of the Tetris(TM) game: rectangles arrive from the top and must be moved inside the strip to reach their place; once placed, they cannot be moved again. Cargo loading applications impose similar constraints. This paper assumes that rectangles must be moved without rotation. For n rectangles, the resulting packing height is shown to have an asymptotic expected value of at least (0.31382733...)n under any on-line packing algorithm. An on-line algorithm is presented that achieves an asymptotic expected height of (0.36976421...)n. This algorithm improves the bound achieved in Next Fit Level (NFL) packing, by compressing the items packed on two successive levels of an NFL packing via on-line movement admissible under the Tetris constraint.
引用
收藏
页码:673 / 693
页数:21
相关论文
共 50 条
  • [1] Packing rectangles in a strip
    E.G. Coffman, Jr.
    Peter J. Downey
    Peter Winkler
    Acta Informatica, 2002, 38 : 673 - 693
  • [2] An approximation scheme for strip packing of rectangles with bounded dimensions
    de la Vega, WF
    Zissimopoulos, V
    DISCRETE APPLIED MATHEMATICS, 1998, 82 (1-3) : 93 - 101
  • [3] Packing anchored rectangles
    Dumitrescu, Adrian
    Toth, Csaba D.
    COMBINATORICA, 2015, 35 (01) : 39 - 61
  • [4] Packing squares into rectangles
    Ellard, Richard
    MacHale, Des
    MATHEMATICAL GAZETTE, 2012, 96 (535): : 1 - 18
  • [5] On packing of rectangles in a rectangle
    Joos, Antal
    DISCRETE MATHEMATICS, 2018, 341 (09) : 2544 - 2552
  • [6] Packing soft rectangles
    Nagamochi, Hiroshi
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2006, 17 (05) : 1165 - 1178
  • [7] Packing rectangles and intervals
    Rhee, WT
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 76 (04) : 479 - 488
  • [8] Packing random rectangles
    E.G. Coffman, Jr.
    George S. Lueker
    Joel Spencer
    Peter M. Winkler
    Probability Theory and Related Fields, 2001, 120 (4) : 585 - 599
  • [9] Packing random rectangles
    Coffman, EG
    Lueker, GS
    Spencer, J
    Winkler, PM
    PROBABILITY THEORY AND RELATED FIELDS, 2001, 120 (04) : 585 - 599
  • [10] Packing anchored rectangles
    Adrian Dumitrescu
    Csaba D. Tóth
    Combinatorica, 2015, 35 : 39 - 61