Mechanical Properties and Simulated Wear of Provisional Resin Materials

被引:22
|
作者
Takamizawa, T. [1 ]
Barkmeier, W. W. [2 ]
Tsujimoto, A. [1 ]
Scheidel, D. [3 ]
Erickson, R. L. [2 ]
Latta, M. A. [2 ]
Miyazaki, M. [1 ]
机构
[1] Nihon Univ, Sch Dent, Operat Dent, Tokyo 101, Japan
[2] Creighton Univ, Sch Dent, Gen Dent, Omaha, NE 68178 USA
[3] Creighton Univ, Sch Dent, Diagnost Sci, Omaha, NE 68178 USA
关键词
RESTORATIVE MATERIALS; CLINICAL WEAR; COMPOSITES; RESISTANCE; NANOHYBRID; NANOFILL; RATES;
D O I
10.2341/14-132-L.1
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
The purpose of this study was to determine flexural properties and erosive wear behavior of provisional resin materials. Three bis-acryl base provisional resins-1) Protemp Plus (PP), 2) Integrity (IG), 3) Luxatemp Automix Plus (LX)-and a conventional poly(methylmethacrylate) (PMMA) resin, UniFast III (UF), were evaluated. A resin composite, Z100 Restorative (Z1), was included as a benchmark material. Six specimens for each of the four materials were used to determine flexural strength and elastic modulus according to ISO Standard 4049. Twelve specimens for each material were used to examine wear using a generalized wear simulation model. The test materials were each subjected to wear challenges of 25,000, 50,000, 100,000, and 200,000 cycles in a Leinfelder-Suzuki (Alabama) wear simulator. The materials were placed in custom cylinder-shaped stainless-steel fixtures, and wear was generated using a cylindrical-shaped flat-ended stainless-steel antagonist in a slurry of non-plasticized PMMA beads. Wear (mean facet depth [mu m] and volume loss [mm(3)]) was determined using a noncontact profilometer (Proscan 2100) with Proscan and AnSur 3D software. The laboratory data were evaluated using two-way analysis of variance (ANOVA; factors: 1) material and 2) cycles) followed by Tukey HSD post hoc test (alpha=0.05). The flexural strength ranged from 68.2 to 150.6 MPa, and the elastic modulus ranged from 2.0 to 15.9 GPa. All of the bis-acryl provisional resins (PP, IG, and LX) demonstrated significantly higher values than the PMMA resin (UF) in flexural strength and elastic modulus (p<0.05). However, there was no significant difference (p>0.05) in flexural properties among three bis-acryl base provisional resins (PP, IG, and LX). Z1 demonstrated significantly (p<0.05) higher flexural strength and elastic modulus than the other materials tested. The results for mean facet wear depth (mu m) and standard deviations (SD) for 200,000 cycles were as follows: PP, 22.4 (5.0); IG, 51.0 (6.5); LX, 63.7 (4.5); UF, 70.5 (8.0); and Z1, 7.6 (1.2). Volume loss (mm(3)) and SDs for 200,000 cycles were as follows: PP, 0.311 (0.049); IG, 0.737 (0.074); LX, 0.919 (0.053); UF, 1.046 (0.127); and Z1, 0.111 (0.017). The two-way ANOVA showed a significant difference among materials (p<0.001) and number of cycles for both facet depth and volume loss. The post hoc test revealed differences (p<0.05) in wear values among the tested materials examined in this study. The findings provide valuable information regarding the flexural properties and the relative wear behavior of the provisional resins examined in this study.
引用
收藏
页码:603 / 613
页数:11
相关论文
共 50 条
  • [1] Dynamic mechanical analysis of provisional resin materials reinforced by metal oxides
    Korkmaz, T
    Doan, A
    Usanmaz, A
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2005, 15 (03) : 179 - 188
  • [2] Surface integrity of provisional resin materials
    Abouelatta, OB
    El-Bediwi, A
    Sakrana, A
    Jiang, XQ
    Blunt, L
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (03) : 584 - 591
  • [3] POLYMERIZATION SHRINKAGE OF PROVISIONAL RESIN MATERIALS
    NORLING, BK
    BURGESS, JO
    CARDENAS, HL
    JOURNAL OF DENTAL RESEARCH, 1995, 74 : 109 - 109
  • [4] Mechanical properties of provisional dental materials: A systematic review and metaanalysis
    Astudillo-Rubio, Daniela
    Delgado-Gaete, Andres
    Bellot-Arcis, Carlos
    Maria Montiel-Company, Jose
    Pascual-Moscardo, Agustin
    Manuel Almerich-Silla, Jose
    PLOS ONE, 2018, 13 (02):
  • [5] Mechanical Properties of Three-Dimensional Printed Provisional Resin Materials for Crown and Fixed Dental Prosthesis: A Systematic Review
    Alzahrani, Saeed J.
    Hajjaj, Maher S.
    Azhari, Amr Ahmed
    Ahmed, Walaa Magdy
    Yeslam, Hanin E.
    Carvalho, Ricardo Marins
    BIOENGINEERING-BASEL, 2023, 10 (06):
  • [6] Color stability of provisional resin restorative materials
    Yannikakis, SA
    Zissis, AJ
    Polyzois, GL
    Caroni, C
    JOURNAL OF PROSTHETIC DENTISTRY, 1998, 80 (05): : 533 - 539
  • [7] MECHANICAL-PROPERTIES OF COMPOSITES RESIN MATERIALS
    VOUGIOUKLAKIS, GJ
    SMITH, DC
    MANTZAVINOS, Z
    JOURNAL OF DENTAL RESEARCH, 1981, 60 : 1221 - 1221
  • [8] Mechanical properties of three provisional restorative materials stored in water.
    Fincher, MM
    Dixon, DL
    Breeding, LC
    JOURNAL OF DENTAL RESEARCH, 1996, 75 : 2221 - 2221
  • [9] Effect of resin sealer on polished provisional materials.
    Eldiwany, M
    Powers, JM
    JOURNAL OF DENTAL RESEARCH, 2002, 81 : A89 - A89
  • [10] Influence of resin on mechanical and tribological properties of friction materials
    Norrdin, N. A.
    Talib, R. J.
    Rabilah, R.
    Sharudin, Hazim
    Azmi, N. N.
    Halidi, S. N. A. M.
    Abdullah, N. S.
    PROCEEDINGS OF ASIA INTERNATIONAL CONFERENCE ON TRIBOLOGY 2018 (ASIATRIB 2018), 2018, : 489 - 490