Isolation and characterization of Nrf1p, a novel negative regulator of the cdc42p GTPase in Schizosaccharomyces pombe

被引:0
|
作者
Murray, JM
Johnson, DI
机构
[1] Univ Vermont, Dept Microbiol & Mol Genet, Burlington, VT 05405 USA
[2] Univ Vermont, Markey Ctr Mol Genet, Burlington, VT 05405 USA
关键词
D O I
暂无
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The Cdc42p GTPase and its regulators, such as the Saccharomyces cerevisiae Cdc24p guanine-nucleotide exchange factor, control signal-transduction pathways in eukaryotic cells leading to actin rearrangements. A cross-species genetic screen was initiated based on the ability of negative regulators of Cdc42p to reverse the Schizosaccharomyces pombe Cdc42p suppression of a S. cerevisiae cdc24(ls) mutant. A total of 32 S. pombe nrf (negative regulator of Cdc forty two) cDNAs were isolated that reversed the suppression. One cDNA, nrf1(+), encoded an similar to 15 kD protein with three potential transmembrane domains and 78% amino-acid identity to a S. cerevisiae gene, designated NRF1. A S. pombe Delta nrf1 mutant was viable but overexpression of nrf1(+) in S. pombe resulted in dose-dependent lethality, with cells exhibiting an ellipsoidal morphology indicative of loss of polarized cell growth along with partially delocalized cortical actin and large vacuoles. nrf1(+) also displayed synthetic overdose phenotypes with cdc42 and pak1 alleles. Green fluorescent protein (GFP) Cdc42p and GFP-Nrf1p colocalized to intracellular membranes, including vacuolar membranes, and to sites of septum formation during cytokinesis. GFP-Nrf1p vacuolar localization depended on the S. pombe Cdc24p homolog Scd1p. Taken together, these data are consistent with Nmp functioning as a negative regulator of Cdc42p within the cell polarity pathway.
引用
收藏
页码:155 / 165
页数:11
相关论文
共 50 条