Primal-dual Newton-type interior-point method for topology optimization

被引:35
|
作者
Hoppe, RHW
Petrova, SI
Schulz, V
机构
[1] Univ Augsburg, Inst Math, D-8900 Augsburg, Germany
[2] Bulgarian Acad Sci, Cent Lab Parallel Proc, Sofia, Bulgaria
[3] Univ Trier, Dept Math, Trier, Germany
关键词
Eddy current equations; topology optimization; nonlinear programming; primal-dual interior-point methods; watchdog strategy;
D O I
10.1023/A:1016070928600
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the problem of minimization of energy dissipation in a conductive electromagnetic medium with a fixed geometry and a priori given lower and upper bounds for the conductivity. The nonlinear optimization problem is analyzed by using the primal-dual Newton interior-point method. The elliptic differential equation for the electric potential is considered as an equality constraint. Transforming iterations for the null space decomposition of the condensed primal-dual system are applied to find the search direction. The numerical experiments treat two-dimensional isotropic systems.
引用
收藏
页码:545 / 571
页数:27
相关论文
共 50 条
  • [1] Primal-Dual Newton-Type Interior-Point Method for Topology Optimization
    R.H.W. Hoppe
    S.I. Petrova
    V. Schulz
    [J]. Journal of Optimization Theory and Applications, 2002, 114 : 545 - 571
  • [2] Primal-dual Newton interior point methods in shape and topology optimization
    Hoppe, RHW
    Petrova, SI
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2004, 11 (5-6) : 413 - 429
  • [3] PRIMAL-DUAL INTERIOR POINT MULTIGRID METHOD FOR TOPOLOGY OPTIMIZATION
    Kocvara, Michal
    Mohammed, Sudaba
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : B685 - B709
  • [4] On implementing a primal-dual interior-point method for conic quadratic optimization
    Andersen, ED
    Roos, C
    Terlaky, T
    [J]. MATHEMATICAL PROGRAMMING, 2003, 95 (02) : 249 - 277
  • [5] On implementing a primal-dual interior-point method for conic quadratic optimization
    E.D. Andersen
    C. Roos
    T. Terlaky
    [J]. Mathematical Programming, 2003, 95 : 249 - 277
  • [6] A new primal-dual interior-point algorithm for semidefinite optimization
    Lee, Yong-Hoon
    Jin, Jin-Hee
    Cho, Gyeong-Mi
    [J]. 2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND APPLICATIONS (ICISA), 2014,
  • [7] Local analysis of the feasible primal-dual interior-point method
    R. Silva
    J. Soares
    L. N. Vicente
    [J]. Computational Optimization and Applications, 2008, 40 : 41 - 57
  • [8] Local analysis of the feasible primal-dual interior-point method
    Silva, R.
    Soares, J.
    Vicente, L. N.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 40 (01) : 41 - 57
  • [9] A primal-dual regularized interior-point method for semidefinite programming
    Dehghani, A.
    Goffin, J. -L.
    Orban, D.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (01): : 193 - 219
  • [10] Convergence rate of primal-dual reciprocal barrier Newton interior-point methods
    El-Bakry, AS
    [J]. OPTIMIZATION METHODS & SOFTWARE, 1998, 9 (1-3): : 37 - 44