Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation

被引:12
|
作者
Li, Shan [1 ,2 ]
Zhang, Shaoqing [3 ,4 ]
Liu, Zhengyu [5 ]
Lu, Lv [6 ]
Zhu, Jiang [2 ]
Zhang, Xuefeng [7 ]
Wu, Xinrong [7 ]
Zhao, Ming [8 ]
Vecchi, Gabriel A. [9 ]
Zhang, Rong-Hua [4 ,10 ]
Lin, Xiaopei [3 ,4 ]
机构
[1] Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Lab Climate & Ocean Atmosphere Studies LaCOAS, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Atmospher Sci, ICCES, Beijing, Peoples R China
[3] Ocean Univ China, Minist Educ, Key Lab Phys Oceanog, Qingdao, Peoples R China
[4] Qingdao Natl Lab Marine Sci & Technol, Qingdao, Peoples R China
[5] Ohio State Univ, Dept Geog, Atmospher Sci Program, Columbus, OH 43210 USA
[6] Ocean Univ China, Coll Atmosphere & Oceanog, Qingdao, Peoples R China
[7] Natl Marine Data & Informat Serv, Tianjin, Peoples R China
[8] GFDL NOAA, Princeton, NJ USA
[9] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
[10] Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会; 中国博士后科学基金;
关键词
parameter estimation; data assimilation; coupled climate model; convection; COUPLED CLIMATE MODELS; SEA-SURFACE TEMPERATURE; CUMULUS CLOUD ENSEMBLE; SIMULATED RADAR DATA; ROOT KALMAN FILTER; ARAKAWA-SCHUBERT; MICROPHYSICAL PARAMETERS; ATMOSPHERIC STATE; ERROR COVARIANCE; PART II;
D O I
10.1002/2017MS001222
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.
引用
收藏
页码:989 / 1010
页数:22
相关论文
共 50 条
  • [1] Estimating Decadal Predictability for the Southern Ocean Using the GFDL CM2.1 Model
    Zhang, Liping
    Delworth, Thomas L.
    Yang, Xiaosong
    Gudgel, Richard G.
    Jia, Liwei
    Vecchi, Gabriel A.
    Zeng, Fanrong
    [J]. JOURNAL OF CLIMATE, 2017, 30 (14) : 5187 - 5203
  • [2] Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1
    Hutchinson, David K.
    de Boer, Agatha M.
    Coxall, Helen K.
    Caballero, Rodrigo
    Nilsson, Johan
    Baatsen, Michiel
    [J]. CLIMATE OF THE PAST, 2018, 14 (06) : 789 - 810
  • [3] Subtropical Impact on the Tropical Double-ITCZ Bias in the GFDL CM2.1 Model
    Liu, Tianying
    Liu, Zhengyu
    Zhao, Yuchu
    Zhang, Shaoqing
    [J]. JOURNAL OF CLIMATE, 2023, 36 (11) : 3833 - 3847
  • [4] Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model
    Wu, Yutian
    Ting, Mingfang
    Seager, Richard
    Huang, Huei-Ping
    Cane, Mark A.
    [J]. CLIMATE DYNAMICS, 2011, 37 (1-2) : 53 - 72
  • [5] Diagnosis of Decadal Predictability of Southern Ocean Sea Surface Temperature in the GFDL CM2.1 Model
    Zhang, Liping
    Delworth, Thomas L.
    Jia, Liwei
    [J]. JOURNAL OF CLIMATE, 2017, 30 (16) : 6309 - 6328
  • [6] Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model
    Yutian Wu
    Mingfang Ting
    Richard Seager
    Huei-Ping Huang
    Mark A. Cane
    [J]. Climate Dynamics, 2011, 37 : 53 - 72
  • [7] Analysis of the biases in the downward shortwave surface flux in the GFDL CM2.1 general circulation model
    Freidenreich, Stuart M.
    Ramaswamy, V.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [8] Impact of the Antarctic bottom water formation on the Weddell Gyre and its northward propagation characteristics in GFDL CM2.1 model
    Zhang, Liping
    Delworth, Thomas L.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2016, 121 (08) : 5825 - 5846
  • [9] Evaluation of Long-Term SOC and Crop Productivity within Conservation Systems Using GFDL CM2.1 and EPIC
    Le, Kieu N.
    Jha, Manoj K.
    Jeong, Jaehak
    Gassman, Philip W.
    Reyes, Manuel R.
    Doro, Luca
    Tran, Dat Q.
    Hok, Lyda
    [J]. SUSTAINABILITY, 2018, 10 (08)
  • [10] Estimating Model Parameters with Ensemble-Based Data Assimilation: A Review
    Jose Ruiz, Juan
    Pulido, Manuel
    Miyoshi, Takemasa
    [J]. JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2013, 91 (02) : 79 - 99