A CLT for the total energy of the two-dimensional critical Ising model

被引:1
|
作者
Jiang, Jianping [1 ]
机构
[1] NYU Shanghai, NYU ECNU Inst Math Sci, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R China
关键词
Ising model; total energy; critical; central limit theorem; MAGNETIZATION; LIMIT;
D O I
10.30757/ALEA.v17-29
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the Ising model on ([1, 2N] x [1, 2M])boolean AND Z(2) at critical temperature with periodic boundary condition in the horizontal direction and free boundary condition in the vertical direction. Let E-M,E- (N) be its total energy (or Hamiltonian). Suppose M is a function of N satisfying M >= N=(ln N)(alpha) for some alpha is an element of [0, 1). In particular, one may take M = N. We prove that E-M,E- (N) + 4 root 2M N - (4/pi)N ln N/root(32/pi)M N ln N converges weakly to a standard Gaussian distribution as N -> infinity.
引用
收藏
页码:759 / 773
页数:15
相关论文
共 50 条
  • [1] Critical behavior of the two-dimensional Ising model with a slit
    Wu, Xintian
    [J]. PHYSICAL REVIEW E, 2017, 95 (05)
  • [2] Critical behaviors of Ising model on a two-dimensional quasilattice
    Wen, Zhangbin
    Ma, Jiahong
    Fu, Xiujun
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (7-8) : 304 - 306
  • [3] The critical equation of state of the two-dimensional Ising model
    Caselle, M
    Hasenbusch, M
    Pelissetto, A
    Vicari, E
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (14): : 2923 - 2948
  • [4] Critical region for droplet formation in the two-dimensional Ising model
    Biskup, M
    Chayes, L
    Kotecky, R
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 242 (1-2) : 137 - 183
  • [5] CRITICAL SINGULARITIES OF THE RANDOM TWO-DIMENSIONAL ISING-MODEL
    JUG, G
    [J]. PHYSICAL REVIEW B, 1983, 27 (07): : 4518 - 4521
  • [6] Quantum critical dynamics in the two-dimensional transverse Ising model
    Hotta, Chisa
    Yoshida, Tempei
    Harada, Kenji
    [J]. PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [7] Nonequilibrium critical dynamics of the two-dimensional ±J Ising model
    Agrawal, Ramgopal
    Cugliandolo, Leticia F.
    Faoro, Lara
    Ioffe, Lev B.
    Picco, Marco
    [J]. PHYSICAL REVIEW E, 2023, 108 (06)
  • [8] Critical Region for Droplet Formation in the Two-Dimensional Ising Model
    Marek Biskup
    Lincoln Chayes
    Roman Kotecký
    [J]. Communications in Mathematical Physics, 2003, 242 : 137 - 183
  • [9] Critical behavior of the two-dimensional thermalized bond Ising model
    Davatolhagh, S.
    Moshfeghian, M.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (17) : 3349 - 3355
  • [10] Two-dimensional Ising model and local nonuniversality of critical exponents
    Bariev, RZ
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (04) : 680 - 681