A classification-and-reconstruction approach for a single image super-resolution by a sparse representation

被引:0
|
作者
Fan, YingYing [1 ]
Tanaka, Masayuki [1 ]
Okutomi, Masatoshi [1 ]
机构
[1] Tokyo Inst Technol, Meguro Ku, Tokyo 152, Japan
来源
DIGITAL PHOTOGRAPHY X | 2014年 / 9023卷
关键词
Sparse coding; Representation; super-resolution; Dictionary;
D O I
10.1117/12.2038826
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A sparse representation is known as a very powerful tool to solve image reconstruction problem such as denoising and the single image super-resolution. In the sparse representation, it is assumed that an image patch or data can be approximated by a linear combination of a few bases selected from a given dictionary. A single over-complete dictionary is usually learned with training patches. Dictionary learning methods almost are concerned about building a general over-complete dictionary on the assumption that the bases in dictionary can represent everything. However, using more appropriate dictionary, the sparse representation of patch can obtain better results. In this paper, we propose a classification-and-reconstruction approach with multiple dictionaries. Before learning dictionary for reconstruction, some representative bases can be used to classify all training patches from database and multiple dictionaries for reconstruction can be learned by classified patches respectively. In reconstruction phase, the patch of input image can be classified and the adaptive dictionary can be selected to use. We demonstrate that the proposed classification-and-reconstruction approach outperforms existing sparse representation with the single dictionary.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] Super-resolution PET image reconstruction with sparse representation
    Hu, Zhanli
    Li, Tao
    Yang, Yongfeng
    Liu, Xin
    Zheng, Hairong
    Liang, Dong
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [2] Hybrid sparse-representation-based approach to image super-resolution reconstruction
    Zhang, Di
    He, Jiazhong
    JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (02)
  • [3] Image super-resolution reconstruction via EROMP sparse representation
    Lu, Jinzheng
    Zhang, Qiheng
    Xu, Zhiyong
    Peng, Zhenming
    CEIS 2011, 2011, 15
  • [4] Noisy image super-resolution reconstruction based on sparse representation
    Dou, Nuo
    Zhao, Ruizhen
    Cen, Yigang
    Hu, Shaohai
    Zhang, Yongdong
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2015, 52 (04): : 943 - 951
  • [5] Infrared Image Super-Resolution Reconstruction via Sparse Representation
    Chen, Zuming
    Guo, Baolong
    Zhang, Qi
    Li, Cheng
    3RD ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2018), 2018, 1069
  • [6] Research on Image Super-resolution Reconstruction based on Sparse Representation
    Jia Tong
    Meng HaiXiu
    2015 IEEE INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2015, : 317 - 320
  • [7] Image super-resolution reconstruction based on adaptive sparse representation
    Xu, Mengxi
    Yang, Yun
    Sun, Quansen
    Wu, Xiaobin
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (24):
  • [8] Color Image Super-Resolution Reconstruction Based on Sparse Representation
    Shen, Minfen
    Zhang, Longshan
    Fu, Huaizheng
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING, PTS 1-3, 2013, 278-280 : 1221 - +
  • [9] Single frame super-resolution reconstruction based on sparse representation
    Xie, Chao
    Lu, Xiaobo
    Zeng, Weili
    Journal of Southeast University (English Edition), 2016, 32 (02): : 177 - 182
  • [10] Bidirectionally aligned sparse representation for single image super-resolution
    Xie, Chao
    Zeng, Weili
    Jiang, Shengqin
    Lu, Xiaobo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (07) : 7883 - 7907