Analysis of grazing bifurcations of quasiperiodic system attractors

被引:19
|
作者
Thota, Phanikrishna [1 ]
Dankowicz, Harry
机构
[1] Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA
[2] Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
discontinuity-induced bifurcations; grazing bifurcations; quasiperiodic attractors; discontinuity mappings; piecewise smooth dynamical systems;
D O I
10.1016/j.physd.2006.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the first application of the discontinuity-mapping approach to the study of near-grazing bifurcations of originally quasiperiodic, co-dimension-two system attractors. The paper establishes an exact formulation for the discontinuity-mapping methodology under the assumption that a Poincare section can be found that is everywhere transversal to the grazing attractor. In particular, it is shown that, while a reduced formulation may be employed successfully in the case of co-dimension-one attractors, it fails to capture dynamics in directions transversal to the original quasiperiodic attractor. This shortcoming necessitates the full machinery presented here. The generality of the proposed approach is illustrated through numerical analysis of two nonlinear dynamical systems of dimension three and four. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 174
页数:12
相关论文
共 50 条
  • [1] Attractors near grazing-sliding bifurcations
    Glendinning, P.
    Kowalczyk, P.
    Nordmark, A. B.
    [J]. NONLINEARITY, 2012, 25 (06) : 1867 - 1885
  • [2] Grazing-Sliding Bifurcations Creating Infinitely Many Attractors
    Simpson, David J. W.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (12):
  • [3] Multiple attractors in grazing-sliding bifurcations in Filippov-type flows
    Glendinning, Paul
    Kowalczyk, Piotr
    Nordmark, Arne B.
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2016, 81 (04) : 711 - 722
  • [4] DISCONTINUOUS BIFURCATIONS OF COEXISTING ATTRACTORS FOR A GEAR TRANSMISSION SYSTEM
    Jin, Hua
    Lü, Xiaohong
    Zhang, Zihao
    Wang, Xin
    [J]. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (01): : 203 - 212
  • [5] LOCAL BIFURCATIONS OF A QUASIPERIODIC ORBIT
    Banerjee, Soumitro
    Giaouris, Damian
    Missailidis, Petros
    Imrayed, Otman
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (12):
  • [6] Global attractors and bifurcations
    Viana, M
    [J]. NONLINEAR DYNAMICAL SYSTEMS AND CHAOS, 1996, 19 : 299 - 324
  • [7] On bifurcations of chaotic attractors in a pulse width modulated control system
    Zhusubaliyev, Zh. T.
    Sopuev, U. A.
    Bushuev, D. A.
    Kucherov, A. S.
    Abdirasulov, A. Z.
    [J]. VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2024, 20 (01):
  • [8] Localization attractors in active quasiperiodic arrays
    T. V. Laptyeva
    S. V. Denisov
    G. V. Osipov
    M. V. Ivanchenko
    [J]. JETP Letters, 2015, 102 : 603 - 609
  • [9] Stochastic Bifurcations, Chaos and Phantom Attractors in the Langford System with Tori
    Bashkirtseva, Irina
    Ryashko, Lev
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (16):
  • [10] Localization attractors in active quasiperiodic arrays
    Laptyeva, T. V.
    Denisov, S. V.
    Osipov, G. V.
    Ivanchenko, M. V.
    [J]. JETP LETTERS, 2015, 102 (09) : 603 - 609