Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster

被引:111
|
作者
Arora, Natasha [1 ,2 ]
Schuenemann, Verena J. [3 ]
Jaeger, Guenter [4 ]
Peltzer, Alexander [3 ,4 ,21 ,22 ,23 ]
Seitz, Alexander [4 ]
Herbig, Alexander [3 ,4 ,21 ,22 ,23 ]
Strouhal, Michal [5 ]
Grillova, Linda [5 ]
Sanchez-Buso, Leonor [6 ,7 ,8 ]
Kuhnert, Denise [9 ]
Bos, Kirsten I. [3 ,21 ,22 ,23 ]
Davis, Leyla Rivero [1 ,21 ,22 ,23 ]
Mikalova, Lenka [5 ]
Bruisten, Sylvia [10 ]
Komericki, Peter [11 ]
French, Patrick [12 ]
Grant, Paul R. [13 ]
Pando, Maria A. [14 ]
Gallo Vaulet, Lucia [15 ]
Rodriguez Fermepin, Marcelo [15 ]
Martinez, Antonio [16 ]
Lara, Arturo Centurion [17 ,18 ]
Giacani, Lorenzo [17 ,18 ]
Norris, Steven J. [19 ]
Smajs, David [5 ]
Bosshard, Philipp P. [20 ]
Gonzalez-Candelas, Fernando [6 ,7 ]
Nieselt, Kay [4 ]
Krause, Johannes [3 ,21 ,22 ,23 ]
Bagheri, Homayoun C. [1 ,21 ,22 ,23 ]
机构
[1] Univ Zurich, Inst Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland
[2] Univ Zurich, Zurich Inst Forens Med, CH-8057 Zurich, Switzerland
[3] Univ Tubingen, Inst Archaeol Sci, D-72070 Tubingen, Germany
[4] Univ Tubingen, Ctr Bioinformat, D-72076 Tubingen, Germany
[5] Masaryk Univ, Fac Med, Dept Biol, Brno 62500, Czech Republic
[6] Univ Valencia, Unidad Mixta Infecc & Salud Publ FISABIO, Valencia 46020, Spain
[7] CIBER Epidemiol & Publ Hlth, Valencia 46020, Spain
[8] Wellcome Trust Sanger Inst, Wellcome Genome Campus, Cambridge CB10 1SA, England
[9] ETH, Dept Environm Syst Sci, Inst Integrat Biol, CH-8092 Zurich, Switzerland
[10] GGD Amsterdam, Publ Hlth Lab, Dept Infect Dis, NL-1018 WT Amsterdam, Netherlands
[11] Med Univ Graz, Dept Dermatol, A-8036 Graz, Austria
[12] Camden Provider Serv, Mortimer Market Ctr CNWL, London NW1 2PL, England
[13] Univ Coll London Hosp NHS Fdn Trust, Dept Clin Microbiol & Virol, London W1T 4EU, England
[14] Univ Buenos Aires, CONICET, Inst Invest Biomed & Retrovirus & SIDA INBIRS, RA-1121 Buenos Aires, DF, Argentina
[15] Univ Buenos Aires, Fac Farm & Bioquim, Dept Bioquim Clin, Microbiol Clin, RA-1113 Buenos Aires, DF, Argentina
[16] Hosp Gen Univ Valencia, Serv Dermatol, Valencia 46014, Spain
[17] Univ Washington, Div Allergy & Infect Dis, Dept Med, Seattle, WA 98105 USA
[18] Univ Washington, Dept Global Hlth, Seattle, WA 98105 USA
[19] UTHealth McGovern Med Sch, Dept Pathol & Lab Med, Houston, TX 77225 USA
[20] Univ Zurich Hosp, Dept Dermatol, CH-8091 Zurich, Switzerland
[21] Max Planck Inst Sci Human Hist, Dept Archaeogenet, D-07745 Jena, Germany
[22] Univ London Imperial Coll Sci Technol & Med, Dept Infect Dis Epidemiol, London SW7 2AZ, England
[23] Repsol Technol Ctr, Madrid 28935, Spain
来源
NATURE MICROBIOLOGY | 2017年 / 2卷 / 01期
关键词
WHOLE GENOME SEQUENCE; MACROLIDE RESISTANCE; IDENTIFIED GENOTYPES; GENETIC DIVERSITY; PREVALENCE; EVOLUTION; SELECTION; SURVEILLANCE; AZITHROMYCIN; MUTATIONS;
D O I
10.1038/nmicrobiol.2016.245
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The abrupt onslaught of the syphilis pandemic that started in the late fifteenth century established this devastating infectious disease as one of the most feared in human history(1). Surprisingly, despite the availability of effective antibiotic treatment since the mid-twentieth century, this bacterial infection, which is caused by Treponema pallidum subsp. pallidum (TPA), has been re-emerging globally in the last few decades with an estimated 10.6 million cases in 2008 (ref. 2). Although resistance to penicillin has not yet been identified, an increasing number of strains fail to respond to the second-line antibiotic azithromycin(3). Little is known about the genetic patterns in current infections or the evolutionary origins of the disease due to the low quantities of treponemal DNA in clinical samples and difficulties in cultivating the pathogen(4). Here, we used DNA capture and whole-genome sequencing to successfully interrogate genome-wide variation from syphilis patient specimens, combined with laboratory samples of TPA and two other subspecies. Phylogenetic comparisons based on the sequenced genomes indicate that the TPA strains examined share a common ancestor after the fifteenth century, within the early modern era. Moreover, most contemporary strains are azithromycin-resistant and are members of a globally dominant cluster, named here as SS14-Omega. The cluster diversified from a common ancestor in the mid-twentieth century subsequent to the discovery of antibiotics. Its recent phylogenetic divergence and global presence point to the emergence of a pandemic strain cluster.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster
    Natasha Arora
    Verena J. Schuenemann
    Günter Jäger
    Alexander Peltzer
    Alexander Seitz
    Alexander Herbig
    Michal Strouhal
    Linda Grillová
    Leonor Sánchez-Busó
    Denise Kühnert
    Kirsten I. Bos
    Leyla Rivero Davis
    Lenka Mikalová
    Sylvia Bruisten
    Peter Komericki
    Patrick French
    Paul R. Grant
    María A. Pando
    Lucía Gallo Vaulet
    Marcelo Rodríguez Fermepin
    Antonio Martinez
    Arturo Centurion Lara
    Lorenzo Giacani
    Steven J. Norris
    David Šmajs
    Philipp P. Bosshard
    Fernando González-Candelas
    Kay Nieselt
    Johannes Krause
    Homayoun C. Bagheri
    Nature Microbiology, 2
  • [2] Evolutionary Processes in the Emergence and Recent Spread of the Syphilis Agent, Treponema pallidum
    Pla-Diaz, Marta
    Sanchez-Buso, Leonor
    Giacani, Lorenzo
    Smajs, David
    Bosshard, Philipp P.
    Bagheri, Homayoun C.
    Schuenemann, Verena J.
    Nieselt, Kay
    Arora, Natasha
    Gonzalez-Candelas, Fernando
    MOLECULAR BIOLOGY AND EVOLUTION, 2022, 39 (01)
  • [3] TREPONEMA PALLIDUM IN TREATED SYPHILIS
    TUFFANELLI, DL
    CALIFORNIA MEDICINE, 1970, 113 (04): : 43 - +
  • [4] CONTEMPORARY SYPHILIS IS CHARACTERISED BY RAPID GLOBAL SPREAD OF PANDEMIC TREPONEMA PALLIDUM LINEAGES
    Beale, M.
    Marks, M.
    Cole, M.
    Lee, M.
    Pitt, R.
    Ruis, C.
    Naidu, P.
    Unemo, M.
    Krajden, M.
    Lukehart, S.
    Morshed, M.
    Fifer, H.
    Thomson, N.
    SEXUALLY TRANSMITTED INFECTIONS, 2021, 97 : A17 - A17
  • [5] Detection of Treponema pallidum sp pallidum DNA in latent syphilis
    Castro, R.
    Prieto, E.
    Aguas, M. J.
    Manata, M. J.
    Botas, J.
    Santo, I.
    Azevedo, J.
    Pereira, If L. H.
    INTERNATIONAL JOURNAL OF STD & AIDS, 2007, 18 (12) : 842 - 845
  • [6] Treponema Pallidum Epidermotropism in Nodular Secondary Syphilis
    Magdaleno-Tapial, Jorge
    Valenzuela-Onate, Cristian
    Maria Ortiz-Salvador, Jose
    Hernandez-Bel, Pablo
    Alegre-De Miquel, Victor
    INDIAN JOURNAL OF DERMATOLOGY, 2018, 63 (06) : 509 - 511
  • [7] Agglutination of Treponema pallidum in human syphilis.
    Kolmer, JA
    Broadwell, S
    Matsunami, T
    JOURNAL OF EXPERIMENTAL MEDICINE, 1916, 24 (04): : 333 - 344
  • [8] Congenital syphilis: Detection of Treponema pallidum in stillborns
    Rawstron, SA
    Vetrano, J
    Tannis, G
    Bromberg, K
    CLINICAL INFECTIOUS DISEASES, 1997, 24 (01) : 24 - 27
  • [9] Recombinant Treponema pallidum antigens in syphilis serology
    Gerber, A
    Krell, S
    Morenz, J
    IMMUNOBIOLOGY, 1997, 196 (05) : 535 - 549
  • [10] On the congenital syphilis kidney and on the treponema pallidum.
    Falci, E
    VIRCHOWS ARCHIV FUR PATHOLOGISCHE ANATOMIE UND PHYSIOLOGIE UND FUR KLINISCHE MEDIZIN, 1923, 247 (01): : 164 - 179