Conditions of two methods for estimating missing preference information

被引:12
|
作者
Zhang, Yun [1 ]
Ma, Hongxu [1 ]
Li, Qi [2 ]
Liu, Baohong [2 ]
Liu, Jian [2 ]
机构
[1] Natl Univ Def Technol, Coll Electromech Engn & Automat, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Coll Informat Syst & Management, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive consistency; Incomplete fuzzy preference relation; Missing value; GROUP DECISION-MAKING; ADDITIVE CONSISTENCY; VALUES; OPTIMIZATION; MODEL; DEAL;
D O I
10.1016/j.ins.2014.03.113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There are two methods, Herrera-Viedma et al. (2007)'s method and Fedrizzi-Giove (2007)'s method, for calculating missing preference information of an incomplete fuzzy preference relation. The underlying concept driving both methods is the additive consistency, and both methods are very similar. To Herrera-Viedma et al.'s method, we point out the shortcoming of one proposition about a sufficient condition of the method, and propose a new proposition, and give a new sufficient and necessary condition which is conveniently used for checking the method if applicable, and an example to validate the checking method, and also propose the only case where Herrera-Viedma et al.'s method is not applicable. To Fedrizzi-Giove's method, we give a wider condition where the method can guarantee the uniqueness of the estimates for the problems than theirs, then give an example to validate the condition, and also propose the only case where this method is not applicable. Based on the above contributions, we propose a new policy for reconstructing incomplete fuzzy preference relations by the two methods. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:186 / 198
页数:13
相关论文
共 50 条
  • [1] A note on two methods for estimating missing pairwise preference values
    Centre for Computational Intelligence, Faculty of Technology, De Montfort University, Leicester LE1 9BH, United Kingdom
    不详
    不详
    [J]. IEEE Trans Syst Man Cybern Part B Cybern, 1600, 6 (1628-1633):
  • [2] A Note on Two Methods for Estimating Missing Pairwise Preference Values
    Chiclana, Francisco
    Herrera-Viedma, Enrique
    Alonso, Sergio
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (06): : 1628 - 1633
  • [3] METHODS OF ESTIMATING CONSUMER PREFERENCE DISTRIBUTIONS
    DAY, RL
    [J]. CALIFORNIA MANAGEMENT REVIEW, 1967, 9 (04) : 35 - 42
  • [4] Algorithms for Estimating Missing Elements of Incomplete Intuitionistic Preference Relations
    Xu, Zeshui
    Cai, Xiaoqiang
    Szmidt, Eulalia
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2011, 26 (09) : 787 - 813
  • [5] Estimating missing values in incomplete additive fuzzy preference relations
    Lee, Hsuan-Shih
    Chou, Ming-Tao
    Fang, Hsin-Hsiung
    Tseng, Wei-Kuo
    Yeh, Chen-Huei
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS: KES 2007 - WIRN 2007, PT II, PROCEEDINGS, 2007, 4693 : 1307 - 1314
  • [6] Estimating missing information by maximum likelihood deconvolution
    Heintzmann, Rainer
    [J]. MICRON, 2007, 38 (02) : 136 - 144
  • [7] Estimating Negotiator Performance Without Preference Information
    Vetschera, Rudolf
    [J]. JOURNAL OF MULTI-CRITERIA DECISION ANALYSIS, 2005, 13 (5-6) : 213 - 227
  • [8] Estimating the Missing Kinect Depth Information by Polynomial Fitting
    Saygili, Goerkem
    Balim, Caner
    Kalkan, Habil
    Hendriks, Emile A.
    [J]. 2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [9] Estimating Missing Environmental Information by Contextual Data Cooperation
    Guastella, Davide Andrea
    Camps, Valerie
    Gleizes, Marie-Pierre
    [J]. PRINCIPLES AND PRACTICE OF MULTI-AGENT SYSTEMS (PRIMA 2019), 2019, 11873 : 523 - 531
  • [10] Comparison of two methods for estimating the abundance, diversity and habitat preference of fluvial macroinvertebrates in contrasting habitats
    Alonso, Alvaro
    Camargo, Julio A.
    [J]. LIMNOLOGICA, 2010, 40 (01): : 23 - 29