Urbanization globally is consistently reshaping the natural landscape to accommodate the growing human population. Urban vegetation plays a key role in moderating environmental impacts caused by urbanization and is critically important for local economic, social and cultural development. The differing patterns of human population growth, varying urban structures and development stages, results in highly varied spatial and temporal vegetation patterns particularly in the pan-Pacific region which has some of the fastest urbanization rates globally. Yet spatially-explicit temporal information on the amount and change of urban vegetation is rarely documented particularly in less developed nations. Remote sensing offers an exceptional data source and a unique perspective to map urban vegetation and change due to its consistency and ubiquitous nature. In this research, we assess the vegetation fractions of 25 cities across 12 pan-Pacific countries using annual gap-free Landsat surface reflectance products acquired from 1984 to 2012, using sub-pixel, spectral unmixing approaches. Vegetation change trends were then analyzed using Mann-Kendall statistics and Theil-Sen slope estimators. Unmixing results successfully mapped urban vegetation for pixels located in urban parks, forested mountainous regions, as well as agricultural land (correlation coefficient ranging from 0.66 to 0.77). The greatest vegetation loss from 1984 to 2012 was found in Shanghai, Tianjin, and Dalian in China. In contrast, cities including Vancouver (Canada) and Seattle (USA) showed stable vegetation trends through time. Using temporal trend analysis, our results suggest that it is possible to reduce noise and outliers caused by phenological changes particularly in cropland using dense new Landsat time series approaches. We conclude that simple yet effective approaches of unmixing Landsat time series data for assessing spatial and temporal changes of urban vegetation at regional scales can provide critical information for urban planners and anthropogenic studies globally. (C) 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.