Power-exponential velocity distributions in disordered porous media

被引:27
|
作者
Matyka, Maciej [1 ]
Golembiewski, Jaroslaw [1 ]
Koza, Zbigniew [1 ]
机构
[1] Univ Wroclaw, Fac Phys & Astron, PL-50204 Wroclaw, Poland
关键词
FLUID-FLOW; STOCHASTIC-MODEL; SIMULATION; TRANSPORT; ROCKS;
D O I
10.1103/PhysRevE.93.013110
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Velocity distribution functions link the micro- and macro-level theories of fluid flow through porous media. Here we study them for the fluid absolute velocity and its longitudinal and lateral components relative to the macroscopic flow direction in a model of a random porous medium. We claim that all distributions follow the power-exponential law controlled by an exponent gamma and a shift parameter u(0) and examine how these parameters depend on the porosity. We find that gamma has a universal value 1/2 at the percolation threshold and grows with the porosity, but never exceeds 2.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] MODELING OF THE POWER-EXPONENTIAL FAMILY OF DISTRIBUTIONS
    POKHODZEI, BB
    [J]. INDUSTRIAL LABORATORY, 1993, 59 (05): : 530 - 533
  • [2] Symmetric inequalities with power-exponential functions
    Yusuke Nishizawa
    [J]. Indian Journal of Pure and Applied Mathematics, 2017, 48 : 335 - 344
  • [3] Complete Study of an Original Power-Exponential Transformation Approach for Generalizing Probability Distributions
    Shama, Mustafa S.
    El Ktaibi, Farid
    Al Abbasi, Jamal N.
    Chesneau, Christophe
    Afify, Ahmed Z.
    [J]. AXIOMS, 2023, 12 (01)
  • [4] SYMMETRIC INEQUALITIES WITH POWER-EXPONENTIAL FUNCTIONS
    Nishizawa, Yusuke
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2017, 48 (03): : 335 - 344
  • [5] The proof of three power-exponential inequalities
    Coronel, Anibal
    Huancas, Fernando
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [6] The proof of three power-exponential inequalities
    Aníbal Coronel
    Fernando Huancas
    [J]. Journal of Inequalities and Applications, 2014
  • [7] ASYMPTOTICS OF ZEROS OF THE POWER-EXPONENTIAL POLYNOMIAL
    VAGABOV, AI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1985, 285 (05): : 1037 - 1041
  • [8] Power-Exponential Expansions of Solutions to an Ordinary Differential Equation
    Bruno, A. D.
    [J]. DOKLADY MATHEMATICS, 2012, 85 (03) : 336 - 340
  • [9] Power-exponential expansions of solutions to an ordinary differential equation
    A. D. Bruno
    [J]. Doklady Mathematics, 2012, 85 : 336 - 340
  • [10] Proof of an open inequality with double power-exponential functions
    Miyagi, Mitsuhiro
    Nishizawa, Yusuke
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,