Partial k-Anonymity for Privacy-Preserving Social Network Data Publishing

被引:13
|
作者
Liu, Peng [1 ,3 ]
Bai, Yan [2 ]
Wang, Lie [3 ]
Li, Xianxian [1 ,3 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[2] Univ Washington, Inst Technol, Tacoma, WA 98402 USA
[3] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Guangxi, Peoples R China
基金
美国国家科学基金会;
关键词
Privacy protection; randomization; social network; anonymity;
D O I
10.1142/S0218194017500048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the popularity of social networks, privacy issues with regard to publishing social network data have gained intensive focus from academia. We analyzed the current privacy-preserving techniques for publishing social network data and defined a privacy-preserving model with privacy guarantee k. With our definitions, the existing privacy-preserving methods, k-anonymity and randomization can be combined together to protect data privacy. We also considered the privacy threat with label information and modify the k-anonymity technique of tabular data to protect the published data from being attacked by the combination of two types of background knowledge, the structural and label knowledge. We devised a partial k-anonymity algorithm and implemented it in Python and open source packages. We compared the algorithm with related k-anonymity and random techniques on three real-world datasets. The experimental results show that the partial k-anonymity algorithm preserves more data utilities than the k-anonymity and randomization algorithms.
引用
收藏
页码:71 / 90
页数:20
相关论文
共 50 条
  • [1] Privacy-preserving distributed k-anonymity
    Jiang, W
    Clifton, C
    [J]. DATA AND APPLICATIONS SECURITY XIX, PROCEEDINGS, 2005, 3654 : 166 - 177
  • [2] (k, ε, δ)-Anonymization: privacy-preserving data release based on k-anonymity and differential privacy
    Tsou, Yao-Tung
    Alraja, Mansour Naser
    Chen, Li-Sheng
    Chang, Yu-Hsiang
    Hu, Yung-Li
    Huang, Yennun
    Yu, Chia-Mu
    Tsai, Pei-Yuan
    [J]. SERVICE ORIENTED COMPUTING AND APPLICATIONS, 2021, 15 (03) : 175 - 185
  • [3] K-Anonymity for Privacy Preserving Crime Data Publishing in Resource Constrained Environments
    Burke, Mark-John
    Kayem, Anne V. D. M.
    [J]. 2014 28TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (WAINA), 2014, : 833 - 840
  • [4] Privacy preserving data publishing of categorical data through k-anonymity and feature selection
    Aristodimou, Aristos
    Antoniades, Athos
    Pattichis, Constantinos S.
    [J]. HEALTHCARE TECHNOLOGY LETTERS, 2016, 3 (01) : 16 - 21
  • [5] Personalized extended (α, k)-anonymity model for privacy-preserving data publishing
    Liu, Xiangwen
    Xie, Qingqing
    Wang, Liangmin
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2017, 29 (06):
  • [6] A Privacy-preserving Computation Offloading Method Based on k-Anonymity
    Zhao Xing
    Peng Jianhua
    You Wei
    Chen Lu
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (04) : 892 - 899
  • [7] Enhanced P-Sensitive K-Anonymity Models for Privacy Preserving Data Publishing
    Sun, Xiaoxun
    Wang, Hua
    Li, Jiuyong
    Truta, Traian Marius
    [J]. TRANSACTIONS ON DATA PRIVACY, 2008, 1 (02) : 53 - 66
  • [8] A New Anonymity Model for Privacy-Preserving Data Publishing
    Huang Xuezhen
    Liu Jiqiang
    Han Zhen
    Yang Jun
    [J]. CHINA COMMUNICATIONS, 2014, 11 (09) : 47 - 59
  • [9] An Innovative K-Anonymity Privacy-Preserving Algorithm to Improve Data Availability in the Context of Big Data
    Yuan, Linlin
    Zhang, Tiantian
    Chen, Yuling
    Yang, Yuxiang
    Li, Huang
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (01): : 1561 - 1579
  • [10] A k-anonymity privacy-preserving approach in wireless medical monitoring environments
    Belsis, Petros
    Pantziou, Grammati
    [J]. PERSONAL AND UBIQUITOUS COMPUTING, 2014, 18 (01) : 61 - 74