Complexity of Functional Learning on Some Classes of Multivariate Functions

被引:0
|
作者
Ye, Peixin [1 ]
He, Qing [2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Informat Proc ICT CAS, Key Lan Intelligent, Beijing, Peoples R China
关键词
functional learning; computational complexity; randomized methods; anisotropic classes;
D O I
10.1109/ICNC.2008.225
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the error of the functional learning on anisotropic Sobolev classes W-p(r)(I-d) and Holder-Nikolskii classes H-p(r)(I-d) with respect to the worst case randomized methods and the average case deterministic methods, where 1 <= P <= infinity. Our results show that if p >= 2 then the stochastic and average error bounds are essentially smaller than the deterministic ones. Quantitatively the improvement amounts to the factor n(-1/2).
引用
收藏
页码:141 / +
页数:2
相关论文
共 50 条