On cycle resonant outerplanar graphs

被引:0
|
作者
Guo, Xiaofeng [1 ]
Xu, Zhixia [1 ,2 ,3 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Wulumuqi Xinjiang 830046, Peoples R China
[2] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC TJKLC, Tianjin 300071, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A connected graph G is said to be k-cycle resonant if, for 0 <= t <= k, for any t disjoint cycles C-1, C-2, ... , C-t in G, there is a perfect matching in G - U-i=1(t) V(C-i). A connected graph G is said to be cycle resonant if G is k*-cycle resonant and k* is the maximum number of disjoint cycles in G. In this paper we prove that for outerplane graphs, 2-cycle resonant is equivalent to cycle resonant and establish a necessary and sufficient condition for an outerplanar graph to be cycle resonant. We also discuss the structure of 2-connected cycle resonant outerplane graphs. Let Phi(G) denote the number of perfect matchings in G. For any 2-connected cycle resonant outerplane graph G with k chords, we get k + 2 <= Phi(G) <= 2(k) + 1 and give the extremal graphs for the equalities in the inequalities.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 50 条
  • [1] Minimum cycle bases of weighted outerplanar graphs
    Liu, Tsung-Hao
    Lu, Hsueh-I
    [J]. INFORMATION PROCESSING LETTERS, 2010, 110 (21) : 970 - 974
  • [2] Minimum Cycle Bases of Weighted Outerplanar Graphs
    Liu, Tsung-Hao
    Lu, Hsueh-I
    [J]. ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 564 - 572
  • [3] OUTERPLANAR GRAPHS
    MARTINOV, NJ
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1978, 31 (03): : 265 - 267
  • [4] Minimum spanning tree cycle intersection problem on outerplanar graphs
    Su, Tai -Yu
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 343 : 328 - 339
  • [5] On the spread of outerplanar graphs
    Gotshall, Daniel
    O'Brien, Megan
    Tait, Michael
    [J]. SPECIAL MATRICES, 2022, 10 (01): : 299 - 307
  • [6] Pathwidth of outerplanar graphs
    Coudert, David
    Huc, Florian
    Sereni, Jean-Sebastien
    [J]. JOURNAL OF GRAPH THEORY, 2007, 55 (01) : 27 - 41
  • [7] CHARACTERIZATIONS OF OUTERPLANAR GRAPHS
    SYSLO, MM
    [J]. DISCRETE MATHEMATICS, 1979, 26 (01) : 47 - 53
  • [8] Augmenting outerplanar graphs
    Kant, G
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1996, 21 (01): : 1 - 25
  • [9] On the spread of outerplanar graphs
    Gotshall, Daniel
    O’Brien, Megan
    Tait, Michael
    [J]. arXiv, 2021,
  • [10] A GENERALIZATION OF OUTERPLANAR GRAPHS
    OUBINA, L
    ZUCCHELLO, R
    [J]. DISCRETE MATHEMATICS, 1984, 51 (03) : 243 - 249