The center of the enveloping algebra and the Campbell-Hausdorff formula

被引:18
|
作者
Vergne, M [1 ]
机构
[1] Ecole Polytech, CNRS, UMR 7640, Ctr Math, F-91128 Palaiseau, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 329卷 / 09期
关键词
D O I
10.1016/S0764-4442(99)90004-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a Lie algebra. In this Note, we define g-valued functions F(x, y) and G(x, y) on g + g, such that x + y - log(e(x)e(y)) = (e(ad) (x) - 1)F(x, y) + (1 - e(-ad) (y))G(x, y). Furthermore, if g is a quadratic Lie algebra, we prove an identity for the trace of the matrix (ad x) partial derivative(x)F + (ad y)partial derivative(y)G. This identity was conjectured in [4] for any Lie algebra g, and proved when a is a soh,able Lie algebra. This result implies (see [4]) that Duflo's isomorphism [2] extends naturally to convolution algebras of invariant distributions on the group G and the Lie algebra a. (C) 1999 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:767 / 772
页数:6
相关论文
共 50 条