Deconvolution boundary kernel method in nonparametric density estimation

被引:11
|
作者
Zhang, Shunpu [1 ]
Karunamuni, Rohana J. [2 ]
机构
[1] Univ Nebraska, Dept Stat, Lincoln, NE 68583 USA
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词
Deconvolution; Boundary kernel function; Nonparametric density estimation; Fourier transformation; Global optimal bandwidth; OPTIMAL RATES; CONVERGENCE; DISTRIBUTIONS; SAMPLE;
D O I
10.1016/j.jspi.2008.10.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the nonparametric deconvolution problem when the true density function is left (or right) truncated. We propose to remove the boundary effect of the conventional deconvolution density estimator by using a special class of kernels: the deconvolution boundary kernels. Methods for constructing such kernels are provided. The mean squared error properties, including the rates of convergence, are investigated for supersmooth and ordinary smooth errors. Numerical simulations show that the deconvolution boundary kernel estimator successfully removes the boundary effects of the conventional deconvolution density estimator. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2269 / 2283
页数:15
相关论文
共 50 条