Particle Swarm Optimisation Representations for Simultaneous Clustering and Feature Selection

被引:0
|
作者
Lensen, Andrew [1 ]
Xue, Bing [1 ]
Zhang, Mengjie [1 ]
机构
[1] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington, New Zealand
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering, the process of grouping unlabelled data, is an important task in data analysis. It is regarded as one of the most difficult tasks due to the large search space that must be explored. Feature selection is commonly used to reduce the size of a search space, and evolutionary computation (EC) is a group of techniques which are known to give good solutions to difficult problems such as clustering or feature selection. However, there has been relatively little work done on simultaneous clustering and feature selection using EC methods. In this paper we compare medoid and centroid representations that allow particle swarm optimisation (PSO) to perform simultaneous clustering and feature selection. We propose several new techniques which improve clustering performance and ensure valid solutions are generated. Experiments are conducted on a variety of real-world and synthetic datasets in order to analyse the effectiveness of the PSO representations across several different criteria. We show that a medoid representation can achieve superior results compared to the widely used centroid representation.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Simultaneous Feature Selection and Clustering Using Particle Swarm Optimization
    Swetha, K. P.
    Devi, V. Susheela
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 : 509 - 515
  • [2] Particle Swarm Optimisation for Feature Selection and Weighting in High-Dimensional Clustering
    O'Neill, Damien
    Lensen, Andrew
    Xue, Bing
    Zhang, Mengjie
    [J]. 2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 173 - 180
  • [3] Label Clustering for Particle Swarm Optimisation based Multi-Label Feature Selection
    Lu, Yan
    Nguyen, Bach Hoai
    Xue, Bing
    [J]. 2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1515 - 1522
  • [4] Overview of particle swarm optimisation for feature selection in classification
    [J]. Tran, Binh (tran.binh@ecs.vuw.ac.nz), 1600, Springer Verlag (8886):
  • [5] Overview of Particle Swarm Optimisation for Feature Selection in Classification
    Binh Tran
    Xue, Bing
    Zhang, Mengjie
    [J]. SIMULATED EVOLUTION AND LEARNING (SEAL 2014), 2014, 8886 : 605 - 617
  • [6] Particle Swarm Optimisation with Genetic Operators for Feature Selection
    Hoai Bach Nguyen
    Xue, Bing
    Andreae, Peter
    Zhang, Mengjie
    [J]. 2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 286 - 293
  • [7] Particle Swarm Optimization with K-means for Simultaneous Feature Selection and Data Clustering
    Prakash, Jay
    Singh, Pramod Kumar
    [J]. 2015 SECOND INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MACHINE INTELLIGENCE (ISCMI), 2015, : 74 - 78
  • [8] Feature selection with clustering probabilistic particle swarm optimization
    Gao, Jinrui
    Wang, Ziqian
    Lei, Zhenyu
    Wang, Rong-Long
    Wu, Zhengwei
    Gao, Shangce
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (09) : 3599 - 3617
  • [9] A New Binary Particle Swarm Optimisation Algorithm for Feature Selection
    Xue, Bing
    Nguyen, Su
    Zhang, Mengjie
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTATION, 2014, 8602 : 501 - 513
  • [10] An Archive Based Particle Swarm Optimisation for Feature Selection in Classification
    Xue, Bing
    Qin, A. K.
    Zhang, Mengjie
    [J]. 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 3119 - 3126