Regression Analysis with Covariates Missing at Random: A Piece-wise Nonparametric Model for Missing Covariates

被引:5
|
作者
Zhao, Yang [1 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Maximum likelihood; Missing covariates; Piece-wise nonparametric model; Semiparametric model; PARAMETRIC REGRESSION; LIKELIHOOD;
D O I
10.1080/03610920802618392
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Statistical analysis for the regression model f(y|x, z) with missing values in the covariate vector X requires modeling of the covariate distribution g(x|z). Likelihood methods, including Ibrahim (1990), Chen (2004), and Zhao (2005), need either X or Z to be discrete. This article considers extending the likelihood methods to deal with cases where both X and Z may be continuous. We propose modeling the covariate distribution g(x|z) using a piece-wise nonparametric model, then a maximum likelihood estimate (MLE) of can be computed following the maximum likelihood estimating procedure of Chen (2004) or Zhao (2005). The resulting estimation method is easy to implement and the asymptotic properties of the MLE follow under certain conditions. Extensive simulation studies for different models indicate that the proposed method is acceptable for practical implementation. A real data example is used to illustrate the method.
引用
收藏
页码:3736 / 3744
页数:9
相关论文
共 50 条
  • [1] Nonparametric regression with selectively missing covariates
    Breunig, Christoph
    Haan, Peter
    [J]. JOURNAL OF ECONOMETRICS, 2021, 223 (01) : 28 - 52
  • [2] Cox Regression with Covariates Missing Not at Random
    Cook V.J.
    Hu X.J.
    Swartz T.B.
    [J]. Statistics in Biosciences, 2011, 3 (2) : 208 - 222
  • [3] QUANTILE REGRESSION WITH COVARIATES MISSING AT RANDOM
    Wei, Ying
    Yang, Yunwen
    [J]. STATISTICA SINICA, 2014, 24 (03) : 1277 - 1299
  • [4] Nonparametric regression with responses missing at random and the scale depending on auxiliary covariates
    Jiang, Tian
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2023, 35 (02) : 302 - 322
  • [5] Weighted expectile regression with covariates missing at random
    Pan, Yingli
    Liu, Zhan
    Song, Guangyu
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (03) : 1057 - 1076
  • [6] Nonparametric and semiparametric models for missing covariates in parametric regression
    Chen, HY
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) : 1176 - 1189
  • [7] On nonparametric classification with missing covariates
    Mojirsheibani, Majid
    Montazeri, Zahra
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (05) : 1051 - 1071
  • [8] Model averaging for multiple quantile regression with covariates missing at random
    Ding, Xianwen
    Xie, Jinhan
    Yan, Xiaodong
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (11) : 2249 - 2275
  • [9] Variable Selection in the Cox Regression Model with Covariates Missing at Random
    Garcia, Ramon I.
    Ibrahim, Joseph G.
    Zhu, Hongtu
    [J]. BIOMETRICS, 2010, 66 (01) : 97 - 104
  • [10] Cox regression analysis with missing covariates via nonparametric multiple imputation
    Hsu, Chiu-Hsieh
    Yu, Mandi
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (06) : 1676 - 1688