Entanglement renormalization, scale invariance, and quantum criticality

被引:128
|
作者
Pfeifer, Robert N. C. [1 ]
Evenbly, Glen [1 ]
Vidal, Guifre [1 ]
机构
[1] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 04期
基金
澳大利亚研究理事会;
关键词
conformal field theory; critical exponents; ground states; lattice theory; quantum entanglement; renormalisation; scaling phenomena;
D O I
10.1103/PhysRevA.79.040301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The use of entanglement renormalization in the presence of scale invariance is investigated. We explain how to compute an accurate approximation of the critical ground state of a lattice model and how to evaluate local observables, correlators, and critical exponents. Our results unveil a precise connection between the multiscale entanglement renormalization ansatz and conformal field theory (CFT). Given a critical Hamiltonian on the lattice, this connection can be exploited to extract most of the conformal data of the CFT that describes the model in the continuum limit.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Entanglement of fermions at quantum criticality
    H. Johannesson
    D. Larsson
    Optics and Spectroscopy, 2007, 103 : 24 - 30
  • [2] Entanglement of fermions at quantum criticality
    Johannesson, H.
    Larsson, D.
    OPTICS AND SPECTROSCOPY, 2007, 103 (01) : 24 - 30
  • [3] Entanglement at a scale and renormalization monotones
    Nima Lashkari
    Journal of High Energy Physics, 2019
  • [4] Entanglement at a scale and renormalization monotones
    Lashkari, Nima
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [5] Scale invariance of entanglement dynamics in Grover's quantum search algorithm
    Rossi, M.
    Bruss, D.
    Macchiavello, C.
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [6] Scale invariance and criticality in nuclear spectra
    Landa, E.
    Morales, I.
    Hernandez, C.
    Vieyra, J. C. Lopez
    Frank, A.
    Velazquez, V.
    REVISTA MEXICANA DE FISICA, 2008, 54 (03) : 48 - 55
  • [7] Scale invariance and criticality in financial markets
    Marsili, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 324 (1-2) : 17 - 24
  • [8] Entanglement and criticality in quantum impurity systems
    Le Hur, Karyn
    Doucet-Beaupre, Philippe
    Hofstetter, Walter
    PHYSICAL REVIEW LETTERS, 2007, 99 (12)
  • [9] Induced entanglement enhanced by quantum criticality
    Ai, Qing
    Shi, Tao
    Long, Guilu
    Sun, C. P.
    PHYSICAL REVIEW A, 2008, 78 (02):
  • [10] Criticality and entanglement in random quantum systems
    Refael, G.
    Moore, J. E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)