Dark solitons behaviors for a (2+1)-dimensional coupled nonlinear Schrodinger system in an optical fiber

被引:31
|
作者
Lan, Zhong-Zhou [1 ]
Gao, Bo [1 ]
Du, Ming-Jing [1 ]
机构
[1] Inner Mongolia Univ Finance & Econ, Sch Comp Informat Management, Hohhot 010070, Peoples R China
基金
中国国家自然科学基金;
关键词
Optical fiber; (2+1)-dimensional coupled nonlinear; Schrodinger system; Hirota method; Bilinear forms; Dark solitons; DISPERSIVE DIELECTRIC FIBERS; SOLITARY WAVES; EQUATIONS; TRANSMISSION; PROPAGATION; PULSES; BRIGHT;
D O I
10.1016/j.chaos.2018.04.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate a (2+1)-dimensional coupled nonlinear Schrodinger system, which describes the transverse effects in an optical fiber, time-independent copropagation and field of optical soliton. Bilinear forms, dark one- and two-soliton solutions are derived by virtue of the Hirota method. Propagation and interaction properties of the dark solitons are discussed: (i) Amplitudes and velocities of the dark solitons are affected by the values of the wave numbers mu, lambda and theta. (ii) Head-on and overtaking interactions between the two parallel dark solitons are discussed, where the amplitudes of the dark solitons remain unchanged after each interaction, implying that the interactions are elastic. (iii) Stationary dark solitons are depicted in this paper. (iv) Through the asymptotic analysis, elastic interaction between the two solitons is discussed analytically. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:169 / 174
页数:6
相关论文
共 50 条
  • [1] Dark solitons for a (2+1)-dimensional coupled nonlinear Schrodinger system with time-dependent coefficients in an optical fiber
    Su, Jing-Jing
    Gao, Yi-Tian
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2017, 104 : 498 - 508
  • [2] Vector solitons for the (2+1)-dimensional coupled nonlinear Schrodinger system in the Kerr nonlinear optical fiber
    Sun, Yan
    Tian, Bo
    Qu, Qi-Xing
    Chai, Han-Peng
    Yuan, Yu-Qiang
    Shan, Wen-Rui
    Jiang, Yan
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (10):
  • [3] Solitons for a (2+1)-dimensional coupled nonlinear Schrodinger system with time-dependent coefficients in an optical fiber
    Su, Jing-Jing
    Gao, Yi-Tian
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2018, 28 (04) : 708 - 723
  • [4] Control of dark and anti-dark solitons in the (2+1)-dimensional coupled nonlinear Schrodinger equations with perturbed dispersion and nonlinearity in a nonlinear optical system
    Yu, Weitian
    Liu, Wenjun
    Triki, Houria
    Zhou, Qin
    Biswas, Anjan
    Belic, Milivoj R.
    [J]. NONLINEAR DYNAMICS, 2019, 97 (01) : 471 - 483
  • [5] Bright and dark optical solitons of the (2+1)-dimensional perturbed nonlinear Schrodinger equation in nonlinear optical fibers
    Wazwaz, Abdul-Majid
    [J]. OPTIK, 2022, 251
  • [6] Bright and dark envelope optical solitons for a (2+1)-dimensional cubic nonlinear Schrodinger equation
    Wazwaz, Abdul-Majid
    Alhejaili, Weaam
    El-Tantawy, S. A.
    [J]. OPTIK, 2022, 265
  • [7] Dynamics of the optical solitons for a (2+1)-dimensional nonlinear Schrodinger equation
    Zuo, Da-Wei
    Jia, Hui-Xian
    Shan, Dong-Ming
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2017, 101 : 522 - 528
  • [8] Analytic study on the mixed-type solitons for a (2+1)-dimensional N-coupled nonlinear Schrodinger system in nonlinear optical-fiber communication
    Wang, Yun-Po
    Tian, Bo
    Sun, Wen-Rong
    Liu, De-Yin
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 1305 - 1312
  • [9] Bright solitons and their interactions of the (3+1)-dimensional coupled nonlinear Schrodinger system for an optical fiber
    Sun, Ya
    Tian, Bo
    Wang, Yu-Feng
    Wang, Yun-Po
    Huang, Zhi-Ruo
    [J]. MODERN PHYSICS LETTERS B, 2015, 29 (35-36):
  • [10] The (2+1)-dimensional hyperbolic nonlinear Schrodinger equation and its optical solitons
    Baleanu, Umitru
    Hosseini, Kamyar
    Salahshour, Soheil
    Sadri, Khadijeh
    Mirzazadeh, Mohammad
    Park, Choonkil
    Ahmadian, Ali
    [J]. AIMS MATHEMATICS, 2021, 6 (09): : 9568 - 9581