Effect of Wavy Trailing Edge on 100meter Flatback Wind Turbine Blade

被引:4
|
作者
Yang, S. J. [1 ]
Baeder, J. D. [1 ]
机构
[1] Univ Maryland, Dept Aerosp Engn, College Pk, MD 20742 USA
关键词
D O I
10.1088/1742-6596/753/2/022060
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The flatback trailing edge design for modern 100meter wind turbine blade has been developed and proposed to make wind turbine blade to be slender and lighter. On the other hand, it will increase aerodynamic drag; consequently the increased drag diminishes turbine power generation. Thus, an aerodynamic drag reducing technique should be accompanied with the flatback trailing edge in order to prevent loss of turbine power generation. In this work, a drag mitigation design, span-wise wavy trailing edge blade, has been applied to a modern 100meter blade. The span-wise trailing edge acts as a vortex generator, and breaks up the strong span-wise coherent trailing edge vortex structure at the flatback airfoil trailing edge which is a major source of large drag. Three-dimensional unsteady Computational Fluid Dynamics (CFD) simulations have been performed for real scale wind turbine blade geometries. Delayed Detached Eddy Simulation (DDES) with the modified laminar-turbulent transition model has been applied to obtain accurate flow field predictions. Graphical Processor Unit (GPU)-accelerated computation has been conducted to reduce computational costs of the real scale wind turbine blade simulations. To verify the structural reliability of the wavy modification of the blade a simple Eigen buckling analysis has been performed in the current study.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Blunt-Wavy Combined Trailing Edge for Wind Turbine Blade Inboard Performance Improvement
    Yang, SeungJoon
    Baeder, James D.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037
  • [2] INVESTIGATION OF FLATBACK AIRFOIL EFFECT IN THE WIND TURBINE BLADE
    Jeong, Jae-Ho
    Kim, Soo-Hyun
    PROCEEDINGS OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE, 2015, VOL 1A, SYMPOSIA, PT 2, 2016,
  • [3] EFFECT OF PROTUBERANCES AT THE BLADE TRAILING EDGE OF A VERTICAL AXIS WIND TURBINE
    Somoano, M.
    Huera-Huarte, F. J.
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 8, 2022,
  • [4] EFFECT OF TRAILING EDGE DAMAGE ON FULL-SCALE WIND TURBINE BLADE FAILURE
    Haselbach, Philipp U.
    Branner, Kim
    20TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS, 2015,
  • [5] Model Predictive Control of Trailing Edge Flaps on a Wind Turbine blade
    Castaignet, Damien
    Poulsen, Niels K.
    Buhl, Thomas
    Wedel-Heinen, Jens Jakob
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 4398 - 4403
  • [6] A comprehensive investigation of trailing edge damage in a wind turbine rotor blade
    Haselbach, Philipp Ulrich
    Eder, Martin Alexander
    Belloni, Federico
    WIND ENERGY, 2016, 19 (10) : 1871 - 1888
  • [7] Aeroelastic stability and response of a wind turbine blade with trailing edge flaps
    Han, W
    WIND ENERGY 1998: SWITCH ON TO WIND POWER, 1998, : 189 - 198
  • [8] Initiation Mechanism of Transverse Cracks in Wind Turbine Blade Trailing Edge
    Wang J.
    Zhang L.
    Huang X.
    Zhang J.
    Yuan C.
    Energy Engineering: Journal of the Association of Energy Engineering, 2022, 119 (01): : 407 - 418
  • [9] The Effects of Wake Dynamics and Trailing Edge Flap on Wind Turbine Blade
    Wang, Yi-Ren
    Tang, Chi
    Chiu, Chien-Chih
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2018, 21 (01): : 105 - 115
  • [10] CFD investigation on the flatback airfoil effect of 10 MW wind turbine blade
    Jae-Ho Jeong
    Soo-Hyun Kim
    Journal of Mechanical Science and Technology, 2018, 32 : 2089 - 2097