MORE ON THE NORMALIZED LAPLACIAN ESTRADA INDEX

被引:13
|
作者
Shang, Yilun [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
关键词
Normalized Laplacian Estrada index; bound; eigenvalue; fractal; LOWER BOUNDS; SUBGRAPH CENTRALITY; COMPLEX NETWORKS;
D O I
10.2298/AADM140724011S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph of order N. The normalized Laplacian Estrada index of G is defined as NEE(G) = Sigma(N)(i=1) e(lambda i-1,) where lambda(1), lambda(2), ... ,lambda(N) are the normalized Laplacian eigenvalues of G. In this paper, we give a tight lower bound for NEE of general graphs. We also calculate NEE for a class of treelike fractals, which contains T fractal and Peano basin fractal as its limiting cases. It is shown that NEE scales linearly with the order of the fractal, in line with a best possible lower bound for connected bipartite graphs.
引用
收藏
页码:346 / 357
页数:12
相关论文
共 50 条
  • [1] The Normalized Laplacian Estrada Index of a Graph
    Li, Jianxi
    Guo, Ji-Ming
    Shiu, Wai Chee
    FILOMAT, 2014, 28 (02) : 365 - 371
  • [2] Novel Bounds for the Normalized Laplacian Estrada Index and Normalized Laplacian Energy
    Clemente, Gian Paolo
    Cornaro, Alessandra
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2017, 77 (03) : 673 - 690
  • [3] MORE ON THE LAPLACIAN ESTRADA INDEX
    Zhou, Bo
    Gutman, Ivan
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2009, 3 (02) : 371 - 378
  • [4] THE NORMALIZED SIGNLESS LAPLACIAN ESTRADA INDEX OF GRAPHS
    Altindag, S. B. Bozkurt
    Milovanovic, E.
    Matejic, M.
    Milovanovic, I.
    TRANSACTIONS ON COMBINATORICS, 2023, 12 (03) : 131 - 142
  • [5] A Note on the Normalized Laplacian Estrada Index of Bipartite Graphs
    Altindag, S. Burcu Bozkurt
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2020, 84 (02) : 369 - 376
  • [6] Laplacian Estrada and Normalized Laplacian Estrada Indices of Evolving Graphs
    Shang, Yilun
    PLOS ONE, 2015, 10 (03):
  • [7] Lower bounds for Estrada index and Laplacian Estrada index
    Bamdad, Hamidreza
    Ashraf, Firouzeh
    Gutman, Ivan
    APPLIED MATHEMATICS LETTERS, 2010, 23 (07) : 739 - 742
  • [8] Estrada Index and Laplacian Estrada Index of Random Interdependent Graphs
    Shang, Yilun
    MATHEMATICS, 2020, 8 (07)
  • [9] LAPLACIAN ESTRADA INDEX OF TREES
    Ilic, Aleksandar
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (03) : 769 - 776
  • [10] ON THE LAPLACIAN ESTRADA INDEX OF A GRAPH
    Li, Jianxi
    Shiu, Wai Chee
    Chang, An
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2009, 3 (01) : 147 - 156