Variable selection in model-based clustering: A general variable role modeling

被引:58
|
作者
Maugis, C. [1 ]
Celeux, G. [4 ]
Martin-Magniette, M. -L. [2 ,3 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
[2] UMR AgroParisTech INRA MIA 518, Paris, France
[3] UEVE, CNRS 8114, URGV UMR INRA 1165, Evry, France
[4] Inria Saclay Ile France, Saclay, France
关键词
D O I
10.1016/j.csda.2009.04.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The currently available variable selection procedures in model-based clustering assume that the irrelevant clustering variables are all independent or are all linked with the relevant clustering variables. A more versatile variable selection model is proposed, taking into account three possible roles for each variable: The relevant clustering variables, the irrelevant clustering variables dependent on a part of the relevant clustering variables and the irrelevant clustering variables totally independent of all the relevant variables. A model selection criterion and a variable selection algorithm are derived for this new variable role modeling. The model identifiability and the consistency of the variable selection criterion are also established. Numerical experiments highlight the interest of this new modeling. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3872 / 3882
页数:11
相关论文
共 50 条
  • [1] Variable selection for model-based clustering
    Raftery, AE
    Dean, N
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) : 168 - 178
  • [2] Variable selection methods for model-based clustering
    Fop, Michael
    Murphy, Thomas Brendan
    [J]. STATISTICS SURVEYS, 2018, 12 : 18 - 65
  • [3] Penalized model-based clustering with application to variable selection
    Pan, Wei
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 : 1145 - 1164
  • [4] Comparing Model Selection and Regularization Approaches to Variable Selection in Model-Based Clustering
    Celeux, Gilles
    Martin-Magniette, Marie-Laure
    Maugis-Rabusseau, Cathy
    Raftery, Adrian E.
    [J]. JOURNAL OF THE SFDS, 2014, 155 (02): : 57 - 71
  • [5] A simple model-based approach to variable selection in classification and clustering
    Partovi Nia, Vahid
    Davison, Anthony C.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (02): : 157 - 175
  • [6] Variable selection for model-based high-dimensional clustering
    Wang, Sijian
    Zhu, Ji
    [J]. PREDICTION AND DISCOVERY, 2007, 443 : 177 - +
  • [7] Pairwise Variable Selection for High-Dimensional Model-Based Clustering
    Guo, Jian
    Levina, Elizaveta
    Michailidis, George
    Zhu, Ji
    [J]. BIOMETRICS, 2010, 66 (03) : 793 - 804
  • [8] Variable selection in model-based clustering and discriminant analysis with a regularization approach
    Celeux, Gilles
    Maugis-Rabusseau, Cathy
    Sedki, Mohammed
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2019, 13 (01) : 259 - 278
  • [9] Variable selection in model-based clustering and discriminant analysis with a regularization approach
    Gilles Celeux
    Cathy Maugis-Rabusseau
    Mohammed Sedki
    [J]. Advances in Data Analysis and Classification, 2019, 13 : 259 - 278
  • [10] Variable selection in model-based clustering using multilocus genotype data
    Toussile W.
    Gassiat E.
    [J]. Advances in Data Analysis and Classification, 2009, 3 (2) : 109 - 134