Design of structural gigahertz multichanneled filter by using generalized Fibonacci superconducting photonic quasicrystals

被引:30
|
作者
Trabelsi, Youssef [1 ]
Ben Ali, Naim [1 ,2 ]
Elhawil, Amna [3 ]
Krishnamurthy, Ramanujam [4 ]
Kanzari, Mounir [1 ,7 ]
Amiri, Iraj Sadegh [5 ,6 ]
Yupapin, Preecha [5 ]
机构
[1] Univ Tunis El Manar, Natl Engn Sch Tunis, Photovolta & Semicond Mat Lab, Tunis 1002, Tunisia
[2] Univ Hail, Dept Ind Engn, Coll Engn Hail, Hail City 2440, Saudi Arabia
[3] Tripoli Univ, Elect & Informat Proc, Fac Engn, Tripoli, Libya
[4] Sri Vasavi Engn Coll, Dept Elect & Commun Engn, Tadepelligudem, AP, India
[5] Ton Duc Thang Univ, Computat Opt Res Grp, Adv Inst Mat Sci, Ho Chi Minh City, Vietnam
[6] Ton Duc Thang Univ, Fac Sci Appl, Ho Chi Minh City, Vietnam
[7] Univ Tunis, Preparatory Engn Inst Tunis, Tunis 1008, Tunisia
关键词
Photonic quasicrystals; Stop bandgap filters; Superconductor; Generalized Fibonacci sequence; THUE-MORSE; TEMPERATURE;
D O I
10.1016/j.rinp.2019.102343
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The design-properties of one-dimensional photonic quasicrystals (PQC) are studied in a microwave frequency range using the transfer matrix method (TMM) and Gorter Casimir Two-Fluid Model (GCTM). The PQC is constructed by a dielectric (SiO2) and High Tc superconducting BSCCO (Bi2Sr2CaCu2O8) materials and organized following the Generalized Fibonacci class (GFC). We have shown that similar channels with zero transmission easily controlled by the order and the lattice parameters of quasiperiodic systems. The cutoff frequency of the opened central gap found at specific arrangement (m = n) is adjusted with changing the temperature and layer thickness of superconductor. The main heterostructure can be useful to design a gigahertz multi channeled filter with similar channels.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Terahertz multichanneled filter in a superconducting photonic crystal
    Lin, Wei-Hsiao
    Wu, Chien-Jang
    Yang, Tzong-Jer
    Chang, Shoou-Jinn
    OPTICS EXPRESS, 2010, 18 (26): : 27155 - 27166
  • [2] Design of output-graded narrow polychromatic filter by using photonic quasicrystals
    Ben Ali, Naim
    Dhasarathan, Vigneswaran
    Alsaif, Haitham
    Trabelsi, Youssef
    Truong Khang Nguyen
    Bouazzi, Y.
    Kanzari, Mounir
    PHYSICA B-CONDENSED MATTER, 2020, 582 (582)
  • [3] Narrow stop band optical filter using one-dimensional regular Fibonacci/Rudin Shapiro photonic quasicrystals
    Y. Trabelsi
    Y. Bouazzi
    N. Benali
    M. Kanzari
    Optical and Quantum Electronics, 2016, 48
  • [4] Narrow stop band optical filter using one-dimensional regular Fibonacci/Rudin Shapiro photonic quasicrystals
    Trabelsi, Y.
    Bouazzi, Y.
    Benali, N.
    Kanzari, M.
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (01)
  • [5] Design of Multiple Resonant Reflectance Filter Using One-Dimensional Fibonacci Superconductor Photonic Crystal
    Athe, Pallavi
    Athe, Pratik
    Srivastava, Sanjay
    Athe, Paridhi
    Shukla, Surendra Kumar
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2022, 35 (10) : 2689 - 2697
  • [6] Design of Multiple Resonant Reflectance Filter Using One-Dimensional Fibonacci Superconductor Photonic Crystal
    Pallavi Athe
    Pratik Athe
    Sanjay Srivastava
    Paridhi Athe
    Surendra Kumar Shukla
    Journal of Superconductivity and Novel Magnetism, 2022, 35 : 2689 - 2697
  • [7] A study of optical reflectance and localization modes of 1-D Fibonacci photonic quasicrystals using different graded dielectric materials
    Singh, Bipin K.
    Pandey, Praveen C.
    JOURNAL OF MODERN OPTICS, 2014, 61 (11) : 887 - 897
  • [8] Design of a Tunable Ultraviolet Filter using Metallodielectric Photonic Crystal
    Banerjee, Anirudh
    Malaviya, Usha
    2007 IEEE APPLIED ELECTROMAGNETICS CONFERENCE, 2007, : 131 - +
  • [9] Design and synthesis of cutoff filter using photonic bandgap materials
    Mishra, RK
    Misra, KD
    Pandey, RP
    Tiwari, RP
    SURFACE REVIEW AND LETTERS, 2004, 11 (06) : 607 - 614
  • [10] Design of an optical filter using photonic band gap material
    Ojha, SP
    Srivastava, SK
    Kumar, N
    Srivastava, SK
    OPTIK, 2003, 114 (03): : 101 - 105