Non-local Similarity Complex Domain Denoising for Hyperspectral Phase Imaging

被引:0
|
作者
Katkovnik, V [1 ]
Shevkunov, I [1 ]
Claus, D. [2 ]
Pedrini, G. [3 ]
Egiazarian, K. [1 ]
机构
[1] Tampere Univ, Lab Signal Proc, FIN-33101 Tampere, Finland
[2] Inst Lasertechnol Med & Messtech, Helmholtzstr 12, D-89081 Ulm, Germany
[3] Univ Stuttgart, ITO, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
基金
芬兰科学院; 欧盟地平线“2020”;
关键词
Hyperspectral imaging; Noise in imaging systems; Complex domain imaging; Complex domain sparsity;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we propose a novel complex domain denoising algorithm for hyperspectral data. The algorithm is based on a Complex Domain Block-Matching 3D (CDBM3D) filter and on similarity of hyperspectral data, which are usually slow varying for close values of wavelengths. The SVD of the hyperspectral data is used in order to define an optimal small dimension data subspace. The CDBM3D is applied in this subspace only. The efficiency of the algorithm is demonstrated in simulation and on experimental data obtained from spectrally resolved digital holography for a transparent color object. It is proved that the proposed filtering algorithm retrieves amplitude and phase distributions even from very noisy data.
引用
收藏
页码:11 / 15
页数:5
相关论文
共 50 条
  • [1] NON-LOCAL SIMILARITY BASED TENSOR DECOMPOSITION FOR HYPERSPECTRAL IMAGE DENOISING
    Xu, Fan
    Bai, Xiao
    Zhou, Jun
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1890 - 1894
  • [2] A New Similarity Measure for Non-local Means Denoising
    Cai, Bin
    Liu, Wei
    Zheng, Zhong
    Wang, Zeng-Fu
    [J]. COMPUTER VISION, CCCV 2015, PT I, 2015, 546 : 306 - 316
  • [3] Adaptive Non-Local Means Image Denoising with Local Similarity Characterization
    Chappelow, J.
    Jordan, P.
    Shea, J.
    Chao, E.
    Harstad, B.
    Maurer, C.
    [J]. MEDICAL PHYSICS, 2017, 44 (06) : 3220 - 3220
  • [4] Non-local Meets Global: An Integrated Paradigm for Hyperspectral Denoising
    He, Wei
    Yao, Quanming
    Li, Chao
    Yokoya, Naoto
    Zhao, Qibin
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 6861 - 6870
  • [5] Memory Augmentation and Non-Local Spectral Attention for Hyperspectral Denoising
    Dong, Le
    Mo, Yige
    Sun, Hao
    Wu, Fangfang
    Dong, Weisheng
    [J]. REMOTE SENSING, 2024, 16 (11)
  • [6] Hyperspectral Image Denoising via Combined Non-Local Self-Similarity and Local Low-Rank Regularization
    Zeng, Haijin
    Xie, Xiaozhen
    Kong, Wenfeng
    Cui, Shuang
    Ning, Jifeng
    [J]. IEEE ACCESS, 2020, 8 : 50190 - 50208
  • [7] Denoising of multidimensional seismic data in the physical domain by a new non-local self similarity method
    Rasoul Anvari
    Mokhtar Mohammadi
    Javad Mafakheri
    Amin Roshandel Kahoo
    Mehrdad Soleimani Monfared
    Shima Rashidi
    Adil Hussien Mohammed
    [J]. Earth Science Informatics, 2023, 16 : 1041 - 1060
  • [8] Denoising of multidimensional seismic data in the physical domain by a new non-local self similarity method
    Anvari, Rasoul
    Mohammadi, Mokhtar
    Mafakheri, Javad
    Kahoo, Amin Roshandel
    Monfared, Mehrdad Soleimani
    Rashidi, Shima
    Mohammed, Adil Hussien
    [J]. EARTH SCIENCE INFORMATICS, 2023, 16 (01) : 1041 - 1060
  • [9] Hyperspectral complex domain denoising
    Katkovnik, Vladimir
    Shevkunov, Igor
    Egiazarian, Karen
    [J]. 2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [10] MONTE CARLO NON-LOCAL MEANS METHOD FOR HYPERSPECTRAL IMAGE DENOISING
    Deng, Chuyin
    Li, Liyan
    He, Zhi
    Li, Jun
    Zhu, Yuanhui
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4772 - 4775