MAYER-VIETORIS PROPERTY OF THE FIXED POINT INDEX

被引:1
|
作者
Barge, Hector [1 ]
Wojcik, Klaudiusz [2 ]
机构
[1] Univ Complutense Madrid, Fac CC Matemat, Plaza Ciencias 3, E-28040 Madrid, Spain
[2] Jagiellonian Univ, Dept Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Fixed point index; Brouwer degree; sectorial decomposition; proper pair; isolated invariant set; PLANAR HOMEOMORPHISMS; CONLEY INDEX; THEOREM; MAPS;
D O I
10.12775/TMNA.2017.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a Mayer-Vietoris kind formula for the fixed point index of maps of ENR triplets f : (X; X-1, X-2) -> (X; X-1, X-2) having compact fixed point set. We prove it under some suitable conditions. For instance when (X; X-1, X-2) = (E-n; E-+(n), E--(n)). We use these results to generalize the Poincare-Bendixson index formula for vector fields to continuous maps having a sectorial decomposition, to study the fixed point index i(f, 0) of orientation preserving homeomorphisms of E-+(2) and (E-3; E-+(3), E--(3)) and the fixed point index in the invariant subspace.
引用
收藏
页码:643 / 667
页数:25
相关论文
共 50 条