Non-parametric Sampling Approximation via Voronoi Tessellations

被引:4
|
作者
Villagran, Alejandro [1 ]
Huerta, Gabriel [2 ]
Vannucci, Marina [3 ]
Jackson, Charles S. [4 ]
Nosedal, Alvaro [5 ]
机构
[1] Employers Insurance, Reno, NV USA
[2] Univ New Mexico, Albuquerque, NM 87131 USA
[3] Rice Univ, Houston, TX USA
[4] Univ Texas Austin, Austin, TX 78712 USA
[5] Univ Toronto, Mississauga, ON L5L 1C6, Canada
关键词
Climate Models; Non-parametric approximation; Parameter estimation; Voronoi tessellation; 62; 62F15; 62G09; 62P12; 86-08; 65C40; QUANTIFYING UNCERTAINTY; BAYESIAN CALIBRATION; CLIMATE; INVERSION; PARAMETER;
D O I
10.1080/03610918.2013.870798
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we propose a novel non-parametric sampling approach to estimate posterior distributions from parameters of interest. Starting from an initial sample over the parameter space, this method makes use of this initial information to form a geometrical structure known as Voronoi tessellation over the whole parameter space. This rough approximation to the posterior distribution provides a way to generate new points from the posterior distribution without any additional costly model evaluations. By using a traditional Markov Chain Monte Carlo (MCMC) over the non-parametric tessellation, the initial approximate distribution is refined sequentially. We applied this method to a couple of climate models to show that this hybrid scheme successfully approximates the posterior distribution of the model parameters.
引用
收藏
页码:717 / 736
页数:20
相关论文
共 50 条