Intercomparison of machine learning methods for statistical downscaling: the case of daily and extreme precipitation

被引:92
|
作者
Vandal, Thomas [1 ]
Kodra, Evan [2 ]
Ganguly, Auroop R. [1 ]
机构
[1] Northeastern Univ, 360 Huntington Ave, Boston, MA 02115 USA
[2] RisQ Inc, Cambridge, MA 02139 USA
关键词
CLIMATE-CHANGE; NEURAL-NETWORKS; BIAS CORRECTION; REGRESSION; TEMPERATURE; STREAMFLOW; RESPONSES; SELECTION; IMPACTS; DENSITY;
D O I
10.1007/s00704-018-2613-3
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Statistical downscaling of Global Climate Models (GCMs) allows researchers to study local climate change effects decades into the future. A wide range of statistical models have been applied to downscaling GCMs but recent advances in machine learning have not been explored compared to traditional approaches. In this paper, we compare five Perfect Prognosis (PP) approaches, Ordinary Least Squares, Elastic-Net, and Support Vector Machine along with two machine learning methods Multi-task Sparse Structure Learning (MSSL) and Autoencoder Neural Networks. In addition, we introduce a hybrid Model Output Statistics and PP approach by modeling the residuals of Bias Correction Spatial Disaggregation (BCSD) with MSSL. Metrics to evaluate each method's ability to capture daily anomalies, large-scale climate shifts, and extremes are analyzed. Generally, we find inconsistent performance between PP methods in their ability to predict daily anomalies and extremes as well as monthly and annual precipitation. However, results suggest that L-1 sparsity constraints aid in reducing error through internal feature selection. The MSSL+BCSD coupling, when compared with BCSD, improved daily, monthly, and annual predictability but decreased performance at the extremes. Hence, these results suggest that the direct application of state-of-the-art machine learning methods to statistical downscaling does not provide direct improvements over simpler, longstanding approaches.
引用
下载
收藏
页码:557 / 570
页数:14
相关论文
共 50 条
  • [1] Intercomparison of machine learning methods for statistical downscaling: the case of daily and extreme precipitation
    Thomas Vandal
    Evan Kodra
    Auroop R. Ganguly
    Theoretical and Applied Climatology, 2019, 137 : 557 - 570
  • [2] Comparison of statistical methods for downscaling daily precipitation
    Muluye, Getnet Y.
    JOURNAL OF HYDROINFORMATICS, 2012, 14 (04) : 1006 - 1023
  • [3] Stepwise extreme learning machine for statistical downscaling of daily maximum and minimum temperature
    MoradiKhaneghahi, Mahsa
    Lee, Taesam
    Singh, Vijay P.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (4-6) : 1035 - 1056
  • [4] Stepwise extreme learning machine for statistical downscaling of daily maximum and minimum temperature
    Mahsa MoradiKhaneghahi
    Taesam Lee
    Vijay P. Singh
    Stochastic Environmental Research and Risk Assessment, 2019, 33 : 1035 - 1056
  • [5] An intercomparison of multiple statistical downscaling methods for daily precipitation and temperature over China: future climate projections
    Yi Yang
    Jianping Tang
    Zhe Xiong
    Shuyu Wang
    Jian Yuan
    Climate Dynamics, 2019, 52 : 6749 - 6771
  • [6] An intercomparison of multiple statistical downscaling methods for daily precipitation and temperature over China: present climate evaluations
    Yi Yang
    Jianping Tang
    Zhe Xiong
    Shuyu Wang
    Jian Yuan
    Climate Dynamics, 2019, 53 : 4629 - 4649
  • [7] An intercomparison of multiple statistical downscaling methods for daily precipitation and temperature over China: present climate evaluations
    Yang, Yi
    Tang, Jianping
    Xiong, Zhe
    Wang, Shuyu
    Yuan, Jian
    CLIMATE DYNAMICS, 2019, 53 (7-8) : 4629 - 4649
  • [8] An intercomparison of multiple statistical downscaling methods for daily precipitation and temperature over China: future climate projections
    Yang, Yi
    Tang, Jianping
    Xiong, Zhe
    Wang, Shuyu
    Yuan, Jian
    CLIMATE DYNAMICS, 2019, 52 (11) : 6749 - 6771
  • [9] Statistical downscaling of global climate model outputs to monthly precipitation via extreme learning machine: A case study
    Alizamir, Meysam
    Moghadam, Mehdi Azhdary
    Monfared, Arman Hashemi
    Shamsipour, Aliakbar
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2018, 37 (05) : 1853 - 1862
  • [10] Comparisons of Machine Learning Methods of Statistical Downscaling Method: Case Studies of Daily Climate Anomalies in Thailand
    Chattrairat, Kanawut
    Wongseree, Waranyu
    Leelasantitham, Adisorn
    JOURNAL OF WEB ENGINEERING, 2021, 20 (05): : 1397 - 1423