Prediction of Particle Damping Parameters using RBF Neural Network

被引:9
|
作者
Veeramuthuvel, P. [1 ,2 ]
Shankar, K. [2 ]
Sairajan, K. K. [1 ]
Machavaram, Rajendra [2 ]
机构
[1] ISRO Satellite Ctr, Dept Space, Bangalore 560017, Karnataka, India
[2] IIT Madras, Machine Design Sect, Dept Mech Engn, Madras 600036, Tamil Nadu, India
关键词
Particle Damping; Damping Ratio; Back Propagation Network; Radial Basis Function; System Parameters;
D O I
10.1016/j.mspro.2014.07.275
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Particle damping is one of the recent passive damping methods used for effective vibration suppression. This paper discusses two different Artificial Neural Networks - Feed Forward Back Propagation Network and Radial Basis Function - applied to determine the relationship between the damping ratio and system parameters based on extensive experiments carried out on an aluminium alloy beam. The experiments are carried out with different combinations of system parameters for the estimation of damping ratio. Based on the Neural Network predictions, the factors which affect the damping performances are studied in detail for the given combination of system parameters. (C) 2014 Elsevier Ltd.
引用
收藏
页码:335 / 344
页数:10
相关论文
共 50 条
  • [1] Application of RBF neural network in prediction of particle damping parameters from experimental data
    Veeramuthuvel, P.
    Shankar, K.
    Sairajan, K. K.
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2017, 23 (06) : 909 - 929
  • [2] Mechanical Property Parameters Prediction of Tube Based on RBF Neural Network
    Jia Meihui
    Tang Chengtong
    Liu Jianhua
    Zhang Tian
    [J]. MECHATRONICS AND APPLIED MECHANICS II, PTS 1 AND 2, 2013, 300-301 : 882 - 888
  • [3] Particle Swarm Optimization RBF Neural Network Model for Internet Traffic Prediction
    He, Tao
    Dan, Tangren
    Wei, Yong
    Li, Huazhong
    Chen, Xu
    Qin, Guorong
    [J]. 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2017, : 521 - 524
  • [4] Study on traffic flow prediction using RBF neural network
    Xiao, JM
    Wang, XH
    [J]. PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 2672 - 2675
  • [5] Solution Concentration Diffusion Prediction Using RBF Neural Network
    Wang, Wenhan
    Peng, Jubo
    Zhang, Jiatao
    Bai, Hailong
    Zhang, Hesheng
    [J]. 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6574 - 6577
  • [6] Wind Power Generation Prediction by Particle Swarm Optimization Algorithm and RBF Neural Network
    Liu, Rui-fang
    [J]. MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 2099 - 2102
  • [7] Prediction of toxicity using a novel RBF neural network training methodology
    Georgia Melagraki
    Antreas Afantitis
    Kalliopi Makridima
    Haralambos Sarimveis
    Olga Igglessi-Markopoulou
    [J]. Journal of Molecular Modeling, 2006, 12 : 297 - 305
  • [8] A photosynthetic rate prediction model using improved RBF neural network
    Liuru Pu
    Yuanfang Li
    Pan Gao
    Haihui Zhang
    Jin Hu
    [J]. Scientific Reports, 12
  • [9] Endpoint Carbon Content Prediction of VOD Using RBF Neural Network
    Li Jianwen
    Liang Chengzhuang
    [J]. 2013 2ND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND MEASUREMENT, SENSOR NETWORK AND AUTOMATION (IMSNA), 2013, : 588 - 590
  • [10] Modelling and Prediction of the CNY Exchange Rate Using RBF Neural Network
    Liu, Zhaocheng
    Zheng, Ziran
    Liu, Xiyu
    Wang, Gongxi
    [J]. 2009 INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING, PROCEEDINGS, 2009, : 38 - 41