Surface plasmon resonance in gold nanoparticles: a review

被引:1513
|
作者
Amendola, Vincenzo [1 ,2 ]
Pilot, Roberto [1 ,2 ]
Frasconi, Marco [1 ]
Marago, Onofrio M. [3 ]
Iati, Maria Antonia [3 ]
机构
[1] Univ Padua, Dept Chem Sci, Via Marzolo 1, I-35131 Padua, Italy
[2] UdR Padova, Consorzio INSTM, Padua, Italy
[3] CNR, IPCF, Vle F Stagno DAlcontres 37, I-98158 Messina, Italy
关键词
plasmon resonance; gold nanoparticles; Mie theory; plasmon sensing; SERS; near-field enhancement; ENHANCED RAMAN-SPECTROSCOPY; DISCRETE-DIPOLE APPROXIMATION; ELECTRON-ENERGY-LOSS; SELF-ASSEMBLED MONOLAYERS; OPTICAL-PROPERTIES; LIGHT-SCATTERING; FANO RESONANCES; SINGLE-MOLECULE; 2ND-HARMONIC GENERATION; COLORIMETRIC DETECTION;
D O I
10.1088/1361-648X/aa60f3
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In the last two decades, plasmon resonance in gold nanoparticles (Au NPs) has been the subject of intense research efforts. Plasmon physics is intriguing and its precise modelling proved to be challenging. In fact, plasmons are highly responsive to a multitude of factors, either intrinsic to the Au NPs or from the environment, and recently the need emerged for the correction of standard electromagnetic approaches with quantum effects. Applications related to plasmon absorption and scattering in Au NPs are impressively numerous, ranging from sensing to photothermal effects to cell imaging. Also, plasmon-enhanced phenomena are highly interesting for multiple purposes, including, for instance, Raman spectroscopy of nearby analytes, catalysis, or sunlight energy conversion. In addition, plasmon excitation is involved in a series of advanced physical processes such as non-linear optics, optical trapping, magneto-plasmonics, and optical activity. Here, we provide the general overview of the field and the background for appropriate modelling of the physical phenomena. Then, we report on the current state of the art and most recent applications of plasmon resonance in Au NPs.
引用
收藏
页数:48
相关论文
共 50 条
  • [1] Surface Plasmon Resonance in Gold Nanoparticles
    Srivastava, A. K.
    Yadev, Rishikesh
    Rai, V. N.
    Ganguly, Tapas
    Deb, S. K.
    SOLID STATE PHYSICS, PTS 1 AND 2, 2012, 1447 : 305 - +
  • [2] Surface Plasmon Resonance Optical Tomography with Gold Nanoparticles
    Xu, K.
    Shi, J.
    Dogan, N.
    Zhao, W.
    Yang, Y.
    MEDICAL PHYSICS, 2017, 44 (06) : 3291 - 3291
  • [3] Temperature dependence of the surface plasmon resonance in gold nanoparticles
    Yeshchenko, O. A.
    Bondarchuk, I. S.
    Gurin, V. S.
    Dmitruk, I. M.
    Kotko, A. V.
    SURFACE SCIENCE, 2013, 608 : 275 - 281
  • [4] Multipole Surface Plasmon Resonance in Electrodeposited Gold Nanoparticles
    Mandke, Mohanrao V.
    Pathan, Habib M.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2014, 13 (02)
  • [5] Surface plasmon resonance in protein covered gold nanoparticles
    Krasovskii, V. I.
    Karavanskii, V. A.
    Orlov, A. N.
    Nagovitsyn, I. A.
    Savranskii, V. V.
    Chudinova, G. K.
    ADVANCED LASER TECHNOLOGIES 2006, 2007, 6606
  • [6] Biocongugation of gold nanoparticles for surface plasmon resonance sensor
    Manoto, Sello
    Malabi, Rudzani
    Ombinda-Lemboumba, Saturnin
    Mthunzi-Kufa, Patience
    PLASMONICS IN BIOLOGY AND MEDICINE XVI, 2019, 10894
  • [7] Surface Plasmon Resonance Biosensors Incorporating Gold Nanoparticles
    Bedford, Erin E.
    Spadavecchia, Jolanda
    Pradier, Claire-Marie
    Gu, Frank X.
    MACROMOLECULAR BIOSCIENCE, 2012, 12 (06) : 724 - 739
  • [8] Damping of the localized surface plasmon polariton resonance of gold nanoparticles
    Hubenthal, F.
    Hendrich, C.
    Traeger, F.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 100 (01): : 225 - 230
  • [9] Contribution of gold nanoparticles to the signal amplification in surface plasmon resonance
    Hong, Xin
    Hall, Elizabeth A. H.
    ANALYST, 2012, 137 (20) : 4712 - 4719
  • [10] Damping of the localized surface plasmon polariton resonance of gold nanoparticles
    F. Hubenthal
    C. Hendrich
    F. Träger
    Applied Physics B, 2010, 100 : 225 - 230