A Projection Method for Optimization Problems on the Stiefel Manifold

被引:8
|
作者
Dalmau-Cedeno, Oscar [1 ]
Oviedo, Harry [1 ]
机构
[1] CIMAT AC, Math Res Ctr, Guanajuato, Mexico
来源
关键词
Constrained optimization; Orthogonality constraints; Non-monotone algorithm; Stiefel manifold; Optimization on manifolds; CORRELATION-MATRICES; PROCRUSTES PROBLEM; RANK REDUCTION; CONSTRAINTS; BARZILAI;
D O I
10.1007/978-3-319-59226-8_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a feasible method based on projections using a curvilinear search for solving optimization problems with orthogonality constraints. Our algorithm computes the SVD decomposition in each iteration in order to preserve feasibility. Additionally, we present some convergence results. Finally, we perform numerical experiments with simulated problems; and analyze the performance of the proposed methods compared with state-of-the-art algorithms.
引用
收藏
页码:84 / 93
页数:10
相关论文
共 50 条
  • [1] A Scaled Gradient Projection Method for Minimization over the Stiefel Manifold
    Oviedo, Harry
    Dalmau, Oscar
    [J]. ADVANCES IN SOFT COMPUTING, MICAI 2019, 2019, 11835 : 239 - 250
  • [3] A Riemannian conjugate gradient method for optimization on the Stiefel manifold
    Xiaojing Zhu
    [J]. Computational Optimization and Applications, 2017, 67 : 73 - 110
  • [4] Multipliers Correction Methods for Optimization Problems over the Stiefel Manifold
    Wang, Lei
    Gao, Bin
    Liu, Xin
    [J]. CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2021, 2 (03): : 508 - 531
  • [5] A Stochastic Consensus Method for Nonconvex Optimization on the Stiefel Manifold
    Kim, Jeongho
    Kang, Myeongju
    Kim, Dohyun
    Ha, Seung-Yeal
    Yang, Insoon
    [J]. 2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 1050 - 1057
  • [6] Conjugate Gradient Methods for Optimization Problems on Symplectic Stiefel Manifold
    Yamada, Mitsutaka
    Sato, Hiroyuki
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2719 - 2724
  • [7] Two adaptive scaled gradient projection methods for Stiefel manifold constrained optimization
    Oviedo, Harry
    Dalmau, Oscar
    Lara, Hugo
    [J]. NUMERICAL ALGORITHMS, 2021, 87 (03) : 1107 - 1127
  • [8] Two adaptive scaled gradient projection methods for Stiefel manifold constrained optimization
    Harry Oviedo
    Oscar Dalmau
    Hugo Lara
    [J]. Numerical Algorithms, 2021, 87 : 1107 - 1127
  • [9] PROXIMAL GRADIENT METHOD FOR NONSMOOTH OPTIMIZATION OVER THE STIEFEL MANIFOLD
    Chen, Shixiang
    Ma, Shiqian
    So, Anthony Man-Cho
    Zhang, Tong
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 210 - 239
  • [10] RIEMANNIAN OPTIMIZATION ON THE SYMPLECTIC STIEFEL MANIFOLD
    Gao, Bin
    Nguyen Thanh Son
    Absil, P-A
    Stykel, Tatjana
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (02) : 1546 - 1575