Excursions of excited random walks on integers

被引:14
|
作者
Kosygina, Elena [1 ]
Zerner, Martin P. W. [2 ]
机构
[1] CUNY, Baruch Coll, Dept Math, New York, NY 10021 USA
[2] Univ Tubingen, Math Inst, Tubingen, Germany
来源
基金
欧洲研究理事会;
关键词
branching process; cookie walk; diffusion approximation; excited random walk; excursion; squared Bessel process; return time; strong transience; BRANCHING-PROCESSES; LIMIT-THEOREMS; EXTINCTION;
D O I
10.1214/EJP.v19-2940
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Several phase transitions for excited random walks on the integers are known to be characterized by a certain drift parameter delta is an element of R. For recurrence/transience the critical threshold is vertical bar delta vertical bar = 1, for ballisticity it is vertical bar delta vertical bar = 2 and for diffusivity vertical bar delta vertical bar = 4. In this paper we establish a phase transition at vertical bar delta vertical bar = 3. We show that the expected return time of the walker to the starting point, conditioned on return, is finite iff vertical bar delta vertical bar > 3. This result follows from an explicit description of the tail behaviour of the return time as a function of delta, which is achieved by diffusion approximation of related branching processes by squared Bessel processes.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [1] Multi-excited random walks on integers
    Zerner, MPW
    PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (01) : 98 - 122
  • [2] Multi-excited random walks on integers
    Martin P.W. Zerner
    Probability Theory and Related Fields, 2005, 133 : 98 - 122
  • [3] Excursions and occupation times of critical excited random walks
    Dolgopyat, Dmitry
    Kosygina, Elena
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2015, 12 (01): : 427 - 450
  • [4] Limit laws of transient excited random walks on integers
    Kosygina, Elena
    Mountford, Thomas
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (02): : 575 - 600
  • [5] Scaling limits of recurrent excited random walks on integers
    Dolgopyat, Dmitry
    Kosygina, Elena
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 14
  • [6] Positively and negatively excited random walks on integers, with branching processes
    Kosygina, Elena
    Zerner, Martin P. W.
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1952 - 1979
  • [7] Random random walks on the integers mod n
    Dai, JJ
    Hildebrand, MV
    STATISTICS & PROBABILITY LETTERS, 1997, 35 (04) : 371 - 379
  • [8] Diophantine Gaussian excursions and random walks
    Lachieze-Rey, Raphael
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [9] On homogeneous and oscillating random walks on the integers
    Bremont, Julien
    PROBABILITY SURVEYS, 2023, 20 : 87 - 112
  • [10] Remarks on the speeds of a class of random walks on the integers
    Boudabra, Maher
    Markowsky, Greg
    DISCRETE MATHEMATICS, 2021, 344 (08)