Visual odometry and map correlation

被引:0
|
作者
Levin, A [1 ]
Szeliski, R [1 ]
机构
[1] Hebrew Univ Jerusalem, IL-91905 Jerusalem, Israel
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we study how estimates of ego-motion based on feature tracking (visual odometry) can be improved using a rough (low accuracy) map of where the observer has been. We call the process of aligning the visual ego-motion with the map locations as map correlation. Since absolute estimates of camera position are unreliable, we use stable local information such as change in orientation to perform the alignment. We also detect when the observer's path has crossed back on itse ( which helps improve both the visual odometry estimates and the alignment between the video and map sequences. Thefinal alignment is computed using a graphical model whose MAP estimate is inferred using loopy belief propagation. Results are presented on a number of indoor and outdoor sequences.
引用
收藏
页码:611 / 618
页数:8
相关论文
共 50 条
  • [1] Visual odometry and map fusion for GPS navigation assistance
    Parra, Ignacio
    Sotelo, Miguel Angel
    Llorca, David F.
    Fernandez, C.
    Llamazares, A.
    Hernandez, N.
    Garcia, I.
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2011,
  • [2] Localization Based on Semantic Map and Visual Inertial Odometry
    Jin, Jie
    Zhu, Xiaoyang
    Jiang, Yongshi
    Du, Zhiying
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2410 - 2415
  • [3] Correlation-Based Visual Odometry for Ground Vehicles
    Nourani-Vatani, Navid
    Borges, Paulo Vinicius Koerich
    JOURNAL OF FIELD ROBOTICS, 2011, 28 (05) : 742 - 768
  • [4] Efficient Visual Odometry Using a Structure-Driven Temporal Map
    Martinez-Carranza, Jose
    Calway, Andrew
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 5210 - 5215
  • [5] Visual odometry
    Nistér, D
    Naroditsky, O
    Bergen, J
    PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, 2004, : 652 - 659
  • [6] Visual-Inertial Odometry with Sparse Map Constraints for Planetary Swarm Exploration
    Bamann, Christoph
    Henkel, Patrick
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER PHYSICAL SYSTEMS (ICPS 2019), 2019, : 290 - 295
  • [7] 3D map building for a humanoid robot by using visual odometry
    Takaoka, Y
    Kida, Y
    Kagami, S
    Mizoguchi, H
    Kanade, T
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 4444 - 4449
  • [8] Visual Multimodal Odometry: Robust Visual Odometry in Harsh Environments
    Kleinschmidt, Sebastian P.
    Wagner, Bernardo
    2018 IEEE INTERNATIONAL SYMPOSIUM ON SAFETY, SECURITY, AND RESCUE ROBOTICS (SSRR), 2018,
  • [9] Outdoor Monocular Visual Odometry Enhancement Using Depth Map and Semantic Segmentation
    Kim, Jee-Seong
    Kim, Chul-Hong
    Shin, Yong-Min
    Cho, Il-Soo
    Cho, Dong-Il Dan
    2020 20TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2020, : 1040 - 1045
  • [10] Visual Correlation Analysis of Numerical and Categorical Data on the Correlation Map
    Zhang, Zhiyuan
    McDonnell, Kevin T.
    Zadok, Erez
    Mueller, Klaus
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2015, 21 (02) : 289 - 303