Some new inequalities involving the Katugampola fractional integrals for strongly η-convex functions

被引:11
|
作者
Kermausuor, Seth [1 ]
Nwaeze, Eze R. [2 ]
机构
[1] Alabama State Univ, Dept Math & Comp Sci, Montgomery, AL 36101 USA
[2] Tuskegee Univ, Dept Math, Tuskegee, AL 36088 USA
关键词
Hermite-Hadamard type inequality; strongly n-convex functions; Holder's inequality; Katugampola fractional integrals; Riemann-Liouville fractional integrals; Hadamard fractional integrals; MAPPINGS;
D O I
10.32513/tbilisi/1553565631
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduced several new integral inequalities of the Hermite-Hadamard type for strongly eta-convex functions via the Katugampola fractional integrals. Some results in the literature are particular cases of our results.
引用
收藏
页码:117 / 130
页数:14
相关论文
共 50 条
  • [1] New Integral Inequalities via the Katugampola Fractional Integrals for Functions Whose Second Derivatives Are Strongly η-Convex
    Kermausuor, Seth
    Nwaeze, Eze R.
    Tameru, Ana M.
    [J]. MATHEMATICS, 2019, 7 (02)
  • [2] Inequalities for Fractional Integrals of a Generalized Class of Strongly Convex Functions
    Yan, Tao
    Farid, Ghulam
    Yasmeen, Hafsa
    Shim, Soo Hak
    Jung, Chahn Yong
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [3] Inequalities Involving New Fractional Integrals Technique via Exponentially Convex Functions
    S. Rashid
    M. A. Noor
    K. I. Noor
    [J]. Ukrainian Mathematical Journal, 2022, 73 : 1412 - 1427
  • [4] Inequalities Involving New Fractional Integrals Technique via Exponentially Convex Functions
    Rashid, S.
    Noor, M. A.
    Noor, K., I
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2022, 73 (09) : 1412 - 1427
  • [5] Some new parameterized inequalities for co-ordinated convex functions involving generalized fractional integrals
    Kalsoom, Humaira
    Budak, Huseyin
    Kara, Hasan
    Ali, Muhammad Aamir
    [J]. OPEN MATHEMATICS, 2021, 19 (01): : 1153 - 1186
  • [6] New integral inequalities of Hermite-Hadamard type via the Katugampola fractional integrals for strongly η-quasiconvex functions
    Kermausuor, Seth
    Nwaeze, Eze R.
    [J]. JOURNAL OF ANALYSIS, 2021, 29 (03): : 633 - 647
  • [7] IMPROVED HERMITE HADAMARD TYPE INEQUALITIES FOR HARMONICALLY CONVEX FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Sanli, Zeynep
    Koroglu, Tuncay
    Kunt, Mehmet
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 1556 - 1575
  • [8] SIMPSON'S TYPE INEQUALITIES VIA THE KATUGAMPOLA FRACTIONAL INTEGRALS FOR s-CONVEX FUNCTIONS
    Kermausuor, Seth
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (05): : 709 - 720
  • [9] IMPROVED HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Sanli, Zeynep
    Kunt, Mehmet
    Koroglu, Tuncay
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (02): : 461 - 474
  • [10] HERMITE-HADAMARD TYPE INEQUALITIES FOR HARMONICALLY CONVEX FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Mumcu, Ilker
    Set, Erhan
    Akdemir, Ahmet Ocak
    [J]. MISKOLC MATHEMATICAL NOTES, 2019, 20 (01) : 409 - 424