Laser-guided pattern writing through Thiobacillus ferrooxidans metabolite

被引:5
|
作者
Hocheng, H. [1 ]
Wang, J. C. [1 ]
Chang, J. H. [1 ]
Shen, W. C. [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Power Mech Engn, Hsinchu 30013, Taiwan
关键词
Laser; Metal deposition; Maskless fabrication; Deposition; T.f; Metabolite; METAL-DEPOSITION;
D O I
10.1016/j.mee.2008.11.051
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most microstructures are fabricated by photolithography, which needs masks to define the specific patterns, and the successive exposure, developing and etching steps. A maskless fabrication process has been developed on the other hand. The designed micro patterns are written on the specimen by laser guiding to build or repair micro structure rapidly rather than using the time-consuming mask fabrication process. The current study investigates the feasibility of laser-assisted deposited copper patterns on copper substrate using Thiobacillus ferrooxidans (T.f.) metabolite as working medium is a new approach instead of chemical deposits. An optical platform with a long working distance objective is used to focus a 1064 nm Nd:YAG laser and to form the desired patterns. This laser-assisted deposited copper patterns process is a photothermal reaction in which the copper ions (Cu(2+)) oxidized from the substrate surface by T.f. metabolite are reduced and deposited along the laser scanning trajectory on substrate. In the experiment, there is a positive correlation between the deposition amount and the laser power, scanning speed and scan repetitions, respectively. Combining the etching and the laser-guided writing through T.f. metabolite reveals an innovative way of producing metallic microstructures. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:565 / 568
页数:4
相关论文
共 50 条
  • [1] Laser-guided direct writing of living cells
    Odde, DJ
    Renn, MJ
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2000, 67 (03) : 312 - 318
  • [2] Laser-guided direct writing for applications in biotechnology
    Odde, DJ
    Renn, MJ
    [J]. TRENDS IN BIOTECHNOLOGY, 1999, 17 (10) : 385 - 389
  • [3] Laser-guided flies
    Murphy, M
    [J]. CHEMISTRY & INDUSTRY, 2005, (08) : 8 - 8
  • [4] Analysis of radiation forces in laser trapping and laser-guided direct writing applications
    Nahmias, YK
    Odde, DJ
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (02) : 131 - 141
  • [5] Laser-Guided Chastity
    Williams, Ruth
    [J]. SCIENTIST, 2014, 28 (07): : 27 - 27
  • [6] Laser-guided sparks
    Noriaki Horiuchi
    [J]. Nature Photonics, 2015, 9 : 488 - 488
  • [7] Laser-guided impact
    不详
    [J]. NATURE PHYSICS, 2010, 6 (05) : 317 - 317
  • [8] Laser-guided impact
    [J]. Nature Physics, 2010, 6 : 317 - 317
  • [9] Laser-guided matter
    David Gevaux
    [J]. Nature Physics, 2012, 8 (9) : 637 - 637
  • [10] Laser-guided lightning
    Aurélien Houard
    Pierre Walch
    Thomas Produit
    Victor Moreno
    Benoit Mahieu
    Antonio Sunjerga
    Clemens Herkommer
    Amirhossein Mostajabi
    Ugo Andral
    Yves-Bernard André
    Magali Lozano
    Laurent Bizet
    Malte C. Schroeder
    Guillaume Schimmel
    Michel Moret
    Mark Stanley
    W. A. Rison
    Oliver Maurice
    Bruno Esmiller
    Knut Michel
    Walter Haas
    Thomas Metzger
    Marcos Rubinstein
    Farhad Rachidi
    Vernon Cooray
    André Mysyrowicz
    Jérôme Kasparian
    Jean-Pierre Wolf
    [J]. Nature Photonics, 2023, 17 : 231 - 235