A priori analysis of initial data for the Riccati equation and asymptotic properties of its solutions

被引:0
|
作者
Chernyavskaya, N. A. [1 ]
Schiff, Jeremy [2 ]
Shuster, L. A. [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Math & Comp Sci, IL-84105 Beer Sheva, Israel
[2] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
D O I
10.1112/blms/bdp050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain two main results for the Cauchy problem y'(x)+1/r(x)y(2) = q(x), y(x)vertical bar(x=x0)=yo, where x(0), y(0) is an element of R, r > 0, q >= 0, 1/r is an element of L-1(loc)(R), q is an element of L-1(loc)(R) and integral(x)(-infinity) 1/r(t) integral(x)(t) q(xi)d xi dt = integral(infinity)(x) 1/r(t) integral(t)(x) q(xi) d xi dt = infinity for all x is an element of R (1) For given initial data x(0), y(0) and functions r and q, we give a condition that can be used to determine whether the solution of the problem can be continued to the whole of R. (2) When the solution is defined on an infinite interval, we study its asymptotic properties as the argument tends to infinity.
引用
收藏
页码:723 / 732
页数:10
相关论文
共 50 条