Rate-distortion analysis of motion-compensated rate scalable video

被引:17
|
作者
Cook, Gregory W. [1 ]
Prades-Nebot, Josep
Liu, Yuxin
Delp, Edward J.
机构
[1] Purdue Univ, Sch Elect & Comp Engn, Video & Image Proc Lab VIPER, W Lafayette, IN 47907 USA
[2] Univ Politecn Valencia, Dept Comunicac, E-46071 Valencia, Spain
关键词
digital video; motion-compenstated prediction; prediction drift; rate-distortion; scalabilty;
D O I
10.1109/TIP.2006.875185
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generally speaking, rate scalable video systems today are evaluated operationally, meaning that the algorithm is implemented and the rate-distortion performance is evaluated for an example set of inputs. However, in these cases it is difficult to separate the artifacts caused by the compression algorithm and data set with general trends associated with scalability. In this paper, we derive and evaluate theoretical rate-distortion performance bounds for both layered and continuously rate scalable video compression algorithms which use a single motion-compensated prediction (MCP) loop. These bounds are derived using rate-distortion theory based on an optimum mean-square error (MSE) quantizer, and are thus applicable to all methods of intraframe encoding which use MSE as a distortion measure. By specifying translatory motion and using an approximation of the predicted error frame power spectral density, it is possible to derive parametric versions of the rate-distortion functions which are based solely on the input power spectral density and the accuracy of the motion-compensated prediction. The theory is applicable to systems which allow prediction drift, such as the data-partitioning and SNR-scalability schemes in MPEG-2, as well as those with zero prediction drift such as fine granularity scalability MPEG-4. For systems which allow prediction drift we show that optimum motion compensation is a sufficient condition for stability of the decoding system.
引用
收藏
页码:2170 / 2190
页数:21
相关论文
共 50 条