BIFURCATION OF LIMIT CYCLES FROM A COMPOUND LOOP WITH FIVE SADDLES

被引:6
|
作者
Sheng, Lijuan [1 ]
Han, Maoan [1 ,2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Zhejiang Normal Univ Jinhua, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Limit cycle; bifurcation; Melnikov function; homoclinic loop; 16TH HILBERT PROBLEM; SYSTEMS; 2-POLYCYCLE; CYCLICITY;
D O I
10.11948/20190342
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We concern the number of limit cycles of a polynomial system with degree nine. We prove that under different conditions, the system can have 12 and 20 limit cycles bifurcating from a compound loop with five saddles. Our method relies upon the Melnikov function method and the method of stability-changing of a double homoclinic loop proposed by the authors[J. Yang, Y. Xiong and M. Han, Nonlinear Anal-Theor., 2014, 95, 756-773].
引用
收藏
页码:2482 / 2495
页数:14
相关论文
共 50 条