Three types of meshless finite volume method for the analysis of two-dimensional elasticity problems

被引:5
|
作者
Ebrahimnejad, M. [1 ]
Fallah, N. [1 ]
Khoei, A. R. [2 ]
机构
[1] Univ Guilan, Dept Civil Engn, Rasht, Iran
[2] Sharif Univ Technol, Dept Civil Engn, Tehran, Iran
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2017年 / 36卷 / 02期
关键词
Finite volume method; Meshless methods; Control volume (CV); Interpolation function; PLATE-BENDING ANALYSIS; GALERKIN MLPG APPROACH; STRESS-ANALYSIS; SOLID MECHANICS; FORMULATION; ELEMENT; VERTEX; THICK;
D O I
10.1007/s40314-015-0273-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents three schemes of 2D meshless finite volume (MFV) method, referred to as MFV with overlapping control volumes (MFV1), MFV with irregular non-overlapping control volumes (MFV2) and MFV with regular non-overlapping control volumes (MFV3). The methods utilize the local symmetric weak form of system equation and the interpolation functions constructed using the weighted multi-triangles method (WMTM) which is recently developed by the present authors. The proposed formulation involves only integrals over the boundaries of control volumes. The performance of the proposed schemes is studied in three benchmark problems. A comparative study between the predictions of the above MFV schemes and finite element method (FEM) shows the superiority of WMTM-based MFV1 and MFV2 over FEM.
引用
收藏
页码:971 / 990
页数:20
相关论文
共 50 条
  • [1] Three types of meshless finite volume method for the analysis of two-dimensional elasticity problems
    M. Ebrahimnejad
    N. Fallah
    A. R. Khoei
    [J]. Computational and Applied Mathematics, 2017, 36 : 971 - 990
  • [2] Adaptive refinement in the meshless finite volume method for elasticity problems
    Ebrahimnejad, M.
    Fallah, N.
    Khoei, A. R.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (12) : 1420 - 1443
  • [3] The global approximate particular solution meshless method for two-dimensional linear elasticity problems
    Bustamante, C. A.
    Power, H.
    Florez, W. F.
    Hang, C. Y.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (05) : 978 - 993
  • [4] Orthogonal meshless finite volume method in elasticity
    Moosavi, M. R.
    Delfanian, F.
    Khelil, A.
    [J]. THIN-WALLED STRUCTURES, 2011, 49 (06) : 708 - 712
  • [5] A meshless singular boundary method for three-dimensional elasticity problems
    Gu, Yan
    Chen, Wen
    Gao, Hongwei
    Zhang, Chuanzeng
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 107 (02) : 109 - 126
  • [6] Two-dimensional analysis of anisotropic crack problems using coupled meshless and fractal finite element method
    Rajesh, K. N.
    Rao, B. N.
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2010, 164 (02) : 285 - 318
  • [7] Two-dimensional analysis of anisotropic crack problems using coupled meshless and fractal finite element method
    K. N. Rajesh
    B. N. Rao
    [J]. International Journal of Fracture, 2010, 164 : 285 - 318
  • [8] Isogeometric meshless finite volume method in nonlinear elasticity
    M. R. Moosavi
    A. Khelil
    [J]. Acta Mechanica, 2015, 226 : 123 - 135
  • [9] Isogeometric meshless finite volume method in nonlinear elasticity
    Moosavi, M. R.
    Khelil, A.
    [J]. ACTA MECHANICA, 2015, 226 (01) : 123 - 135
  • [10] Finite volume element method for two-dimensional fractional subdiffusion problems
    Karaa, Samir
    Mustapha, Kassem
    Pani, Amiya K.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (02) : 945 - 964