Field-weighted XML retrieval based on BM25

被引:0
|
作者
Lu, Wei [1 ]
Robertson, Stephen
MacFarlane, Andrew
机构
[1] Wuhan Univ, Sch Informat Management, Ctr Studies Informat Resources, Wuhan 430072, Peoples R China
[2] Microsoft Res, Cambridge, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This is the first year for the Centre for Interactive Systems Research participation of INEX. Based on a newly developed XML indexing and retrieval system on Okapi, we extend Robertson's field-weighted BM25F for document retrieval to element level retrieval function BM25E. In this paper, we introduce this new function and our experimental method in detail, and then show how we tuned weights for our selected fields by using INEX 2004 topics and assessments. Based on the tuned models we submitted our runs for CO.Thorough, CO.FetchBrowse, the methods we propose show real promise. Existing problems and future work are also discussed.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 50 条
  • [1] BM25t: a BM25 extension for focused information retrieval
    Gery, Mathias
    Largeron, Christine
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 32 (01) : 217 - 241
  • [2] BM25t: a BM25 extension for focused information retrieval
    Mathias Géry
    Christine Largeron
    [J]. Knowledge and Information Systems, 2012, 32 : 217 - 241
  • [3] Legal Information Retrieval and Entailment Based on BM25, Transformer and Semantic Thesaurus Methods
    Kim, Mi-Young
    Rabelo, Juliano
    Okeke, Kingsley
    Goebel, Randy
    [J]. REVIEW OF SOCIONETWORK STRATEGIES, 2022, 16 (01): : 157 - 174
  • [4] A Framework for BM25F-based XML Retrieval
    Itakura, Kelly Y.
    Clarke, Charles L. A.
    [J]. SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL, 2010, : 843 - 844
  • [5] Legal Information Retrieval and Entailment Based on BM25, Transformer and Semantic Thesaurus Methods
    Mi-Young Kim
    Juliano Rabelo
    Kingsley Okeke
    Randy Goebel
    [J]. The Review of Socionetwork Strategies, 2022, 16 : 157 - 174
  • [6] PyTerrier: Declarative Experimentation in Python']Python from BM25 to Dense Retrieval
    Macdonald, Craig
    Tonellotto, Nicola
    MacAveney, Sean
    Ounis, Iadh
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4526 - 4533
  • [7] JASSjr: The Minimalistic BM25 Search Engine for Teaching and Learning Information Retrieval
    Trotman, Andrew
    Lilly, Kat
    [J]. PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 2185 - 2188
  • [8] INCREMENTAL CLUSTERING IN SHORT TEXT STREAMS BASED ON BM25
    Xu, Lixin
    Chen, Guang
    Yang, Lei
    [J]. 2014 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2014, : 8 - 12
  • [9] Bug report quality detection based on the BM25 algorithm
    Chen L.
    Huang S.
    Sun J.
    Hui Z.
    Wu K.
    [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2020, 60 (10): : 829 - 836
  • [10] The probabilistic relevance framework: BM25 and beyond
    Robertson, Stephen
    Zaragoza, Hugo
    [J]. Foundations and Trends in Information Retrieval, 2009, 3 (04): : 333 - 389